
ÿÿ   

Earlier,  both  cin  and  cout  have  been  using  iostream.h  for  these  objects.  When  iostream  does  not  use  this  header  file  then  

cout  has  no  value.  File  handling  in  C++  is  a  topic  which  has  been  given  separate  header  file,  its  name  is  fstream.

In  the  program,  cin  and  cout  store  the  memory  for  a  short  time,  that  is,  when  the  programmer  closes  the  program,  then  all  

the  data  of  the  program  is  destroyed.  Programmer  uses  some  variables,  arrays,  structures,  unions  to  store  data  in  the  program,  but  

this  data  is  not  permanently  stored.  File  Handling  is  used  to  store  it  permanently.  Files  created  during  file  handling,  whether  they  are  

of  different  types  (.txt, .doc  etc.),  are  portable.  It  is  used  in  other  computers  as  well.  Ultimately  this  header  file  fstream  has  to  be  used  

for  File  Handling.  fstream  There  are  no  classes  in  this  header  file.

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

stay  |  In  the  same  way,  File  Handling  has  also  been  done.

,   

ifstream:  ifstream  is  used  to  read  the  file.  ofstream :  ifstream  is  used  to  write  to  the  file.  fstream:  

fstream  is  used  to  read  and  write  the  file.  There  are  two  classes  in  the  fstream  class,  ifstream  and  

ofstream.  If  the  file  is  to  be  read,  then  ifstream  is  required  and  if  data  is  to  be  written  on  the  file,  ofstream  is  

required.  But  it  should  be  understood  in  which  mode  to  open  the  file.

cin  of  istream  class  and  of  ostream  class

Of ?  why  do  you  useFile  Handling   

UNIT  -5  

C/C++  

•  In  File  Handling,  data  is  permanently  stored  in  a  secondary  storage  device  (Hard  
disk).  Open,  close,  read,  write  keys  are  used.  •  File  Handling

1.  ifstream  
2.  ofstream  
3.  fstream

File  Handling-  

-



C/C++  
PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Seven  modes  of  file  have  been  created.

happens.  If  stream  class  'ifstream'  is  used  then  file  open  in  default  ios::in(read)  mode  if  stream  class  'ofstream'  is  used  then  file  

open  in  default  ios::out(write)  mode.

ifstream  

Data  is  reduced  from  the  file.

ios::in   

open   

ofstream

ios::out   

ifstream  

open  function  fails  and  new  file  create

Stream   

Binary  file  is  done.  If  no  extension  is  given  to  the  file,  then  the  file  is  opened  in  default .txt  

mode.

ios::ate   

ios::nocreate  ofstream

ofstream

Description  

Data  is  appended  at  the  end-of-file.  It  is  used  to  add  meaning  data.

The  file  is  opened  in  write  mode.

ofstream

ios::trunk

ifstream   

ios::binary   

If  the  file  does  not  already  exist,  the  open  function  fails  and  the  file  is  not  created.

Type  of   

ofstream

ofstream

If  the  file  already  exists,  it  

doesn't

Data  is  appended  at  the  end-of-file  and  the  entire  data  in  the  file  is  controlled  with  the  

existing  data.

ios::app   

ios::noreplace  ofstream

Modes  

The  file  is  opened  in  read  mode.

-



There  is  a  

closing  file,  then  it  has  to  be  closed  as  well.  When  the  file  is  closed,  the  file  that

open   

Syntax  For  Opening  File  

Multiple  modes  can  also  be  used  with  the  Bitwise  OR  Operator(|)

Syntax  For  Closing  File  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Let's  

go  to  File.

When  File  

allocates  open  memory  it  is  freed.

Opening  File   

C/C++  

for  eg.

for  eg.

stream-class  stream-object;  

downstream  fault;

fout.open("sample.txt",  ios::in|ios::out);  

stream-object.close();   

stream-object.open("file_name");   

fout.open("sample.txt"); //  default  mode  is  ios::out  

fstream  error;

//  create  stream  

-



,  its  is_open()  orIf  so,  it  has  to  check  whether  the  file  is  open  or  not  when  file  open  fail()  member  functions  are  used.  is_open()  and  fail  both  member  

functions  return  boolean  values.

ÿÿ   

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Source  Code :  

for  eg.

C/C++  

Check  File  Open  or  not!  

ifstream  error;

if(fout.is_open()){   

fout.close();  

fout.close();   

int  main(){  

//  or  if(!fout.fail()){  

using  namespace  std;  

cout<<"Unable  to  open  file."<<endl;  

}  

#include  <iostream.h>  

#include  <fstream.h>  

fout.open("sample.txt");  

}else{  

cout<<"File  is  Opened."<<endl;  

-



Read  Data  from  a  File  The  

given  program  is  used  to  read  a  File.  There  is  a  variable  of  

character  data  type,  in  which  it  is  done  to  store  the  data  of  the  file.  Ifstream's  stream-object  name  is  fouted  

and  later  file  is  used  with  no  argument  of  mode  in  function  then  ios::in  is  already  there  (default).

open   

,   

Later  whether  the  file  is  open  or  not  is  checked  by  the  condition.  If  the  file  is  open,  then  the  program  

continues  and  if  the  file  is  not  open,  then  the  program  will  be  terminated  by  exit()  (stdlib.h)  function.  Later,  

while  loop  is  used  to  check  whether  the  file  has  reached  end-of-file  or  not.

What  have  you  done?  But  

open  member  is  because,  if  istream  class

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Hello  World!  

return  0;  

#include  <iostream.h>  

}  

File  is  Opened.  

C/C++  

Output:  

sample.txt  

Source  Code :  

-



C/C++  
PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

cout<<"Unable  to  opened  file!";  

char  ch[30];  

#include  <fstream.h>  

//Program  terminate  if  file  is  not  opened.  

ifstream  error;

while(!fout.eof()){  

#include  <stdlib.h>  

exit(1);   

fout.open("sample.txt") ;  

using  namespace  std;  

}  

if(!fout){  

int  main(){  

cout<<"File  Contents :  ";  

-



PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

return  0;  

error>>ch;

#include  <iostream.h>  

}  

int  main(){  

cout<<ch<<"  ";  

#include  <fstream.h>  

}  

#include  <stdlib.h>  

File  Contents :  Hello  World!  

fout.close();  

using  namespace  std;  

C/C++  

Write  data  on  a  File  

Output :  

-



PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

fout.close();  

//Program  terminate  if  file  is  not  opened.  

downstream  fault;

return  0;  

exit(1);   

fout.open("sample.txt") ;  

}  

}  

if(!fout){  

fout<<"Hello  Friends!";  

cout<<"Unable  to  opened  file!";  

Hello  Friends!  

C/C++  

Output:  

sample.txt  

-



Syntax  for  get()  for  Console  

Syntax  for  get()  for  File  Handling  

Single  character  is  inputted  from  the  get()  member  function.  The  

get()  function  is  defined  in  the  istream  class.  This  means  to  use  this  function  iostream  this  

header  file  has  to  be  included.  get()  are  unformatted  stream  IO  functions.  get()  function  is  

used  to  read  the  data.  cin>>ch  and  cin.get(ch);  What  is  mefic?  cin  >>  ch;  It  does  not  

accept  newline  and  whitespace.  cin.get;  It  takes  in  newlines  and  whitespaces.

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  

SIR)  get()  Member  Function

get()  Example  

C/C++  

#include  <iostream.h>  

cin.get(char  ch);  or  

stream-object_of_ifstream_class.get(char  ch);   

#include  <fstream.h>  

char  ch  =  cin.get();  

or   

using  namespace  std;  

char  ch  =  stream-object_of_ifstream_class.get();  

-



C/C++  

cout<<ch;  

cout<<"Enter  one  character :  ";  

Hello  Friends!  

return  0;  

#include  <iostream.h>  

cin.get(ch);  

}  

Enter  one  character :  o  

int  main(){  

cout<<"Entered  character :  ";  

char  ch;  

Entered  character :  o  

get()  with  file  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Source  Code :  

sample.txt  

Output:  

-



C/C++  
PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

char  ch;  

cout<<"Unable  to  opened  file!";  

if(!fin){  

while(!fin.eof()){  

fin.open("sample.txt") ;  

#include  <stdlib.h>  

exit(1);   

#include  <fstream.h>  

//Program  terminate  if  file  is  not  opened.  

cout<<"File  Contents :  ";  

int  main(){  

using  namespace  std;  

}  

ifstream  fin;  

fin.get(ch);  

-



C/C++  

}  

cout<<ch;  

stream-object_of_ofstream_class.put(char  ch);  

}  

File  Contents :  Hello  Friends!  

fin.close();  

cout.put(char  ch);  

return  0;  

put()  Member  Function  

A  single  character  is  outputted  from  the  put()  member  function.  put()  

function  is  defined  in  ostream  class.  This  means  to  use  this  function  iostream  this  header  file  has  to  

be  included.  put()  are  unformatted  stream  IO  functions.

Syntax  for  put()  for  Console  

Syntax  for  put()  for  File  Handling  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Output:  

-



C/C++  

put()  Example  

cout.put(ch)<<endl;  

using  namespace  std;  

}  

cout<<"Value  of  c :  ";  

int  main(){  

//  ASCII  value  of  a  is  65  

char  ch='H',  c  =  65;  

#include  <iostream.h>  

cout.put(c);   

cout<<"Value  of  ch :  ";  

#include  <fstream.h>  

return  0;  

PAARAS  INSTITUTE  OF  EDUCATION  
(KASHYAP  SIR)  put()  function  is  used  to  write  data.

Source  Code :  

-



C/C++  

Source  Code :  

Output:  

put()  with  file  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

using  namespace  std;  

int  main(){  

#include  <iostream.h>  

Value  of  ch :  H  

char  ch='H';  

#include  <fstream.h>  

Value  of  c :  A  

downstream  fault;

#include  <stdlib.h>  

fout.open("sample.txt") ;  

-



C/C++  

}  

}  

if(!fout){  

stream-object_of_ofstream_class.write(line_or_string,  stream_size);  

fout.put(ch);  

cout<<"Unable  to  opened  file!";  

H  

fout.close();  

//Program  terminate  if  file  is  not  opened.  

return  0;  

exit(1);   

write()  Member  Function  

Syntax  for  write()  for  File  Handling  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Output:  sample.txt  

-



C/C++  

stream_size);  

int  main(){  

#include  <iostream.h>  

#include  <fstream.h>  

cout.write(line_or_string,  stream_size);  

#include  <stdlib.h>  

cout.write(line_or_string,  stream_size).write(line_or_string,   

using  namespace  std;  

write()  Example  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Syntax  for  write()  for  Console  

Concatenate  write()  function  with  dot  operator  

write()  function  is  the  output  function,  which  displays  the  line.  write()  

function  is  a  member  function  of  the  iostream  class.  The  write()  function  

has  two  arguments.

1.  line_or_string:  This  is  an  array  of  character  type.  2.  

stream_size :  How  many  characters  to  take  from  the  line  is  written  here.  If  stream_size  is  exceeded  then  
whitespaces  are  also  done.

Source  Code :  

-



C/C++  

#include  <iostream.h>  

char  ch[12]  =  "Hello  World!";  

#include  <fstream.h>  

Hello  World!  

cout.write(ch,  12);  

#include  <stdlib.h>  

return  0;  

using  namespace  std;  

}  

int  main(){  

write()  with  file  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Source  Code :  

Output:  sample.txt  

-



C/C++  

fout.write(ch,  12);  

cout<<"Unable  to  opened  file!";  

char  ch[12]  =  "Hello  World!";  

fout.close();  

//Program  terminate  if  file  is  not  opened.  

Hello  World!  

downstream  error;

return  0;  

exit(1);   

fout.open("sample.txt") ;  

}  

}  

if(!fout){  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Output:  sample.txt  

-



C/C++  

getline()  Example  

getline()  Member  Function  

Source  Code :  

sample.txt  

Syntax  for  getline()  for  Console  

Syntax  for  getline()  for  File  Handling  

getline()  function  This  is  the  input  function,  which  inputs  the  line  from  the  keyboard.  

getline()  function  is  a  member  function  of  istream  class.  There  is  NULL  character(\0)  

at  the  end  of  the  string  of  getline()  function.

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

#include  <fstream.h>  

#include  <stdlib.h>  

stream-object_of_ifstream_class.getline(line_or_string,   

Hello  World!  

cin.getline(line_or_string,  stream_size);  

stream_size);  

#include  <iostream.h>  

-



C/C++  

char  ch[12];  

Hello  World!  

return  0;  

}  

cout<<"Enter  String :  ";  

using  namespace  std;  

Enter  String :  Hello  World!  

cin.getline(ch,  12);  

int  main(){  

Entered  String :  Hello  World  

cout<<"Entered  String :  "<<ch;  

getline()  with  file  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Output:  

sample.txt  

-



C/C++  

Source  Code :  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

}  

fin.open("sample.txt") ;  

ifstream  fin;  

using  namespace  std;  

char  ch[12];  

cout<<ch;  

#include  <iostream.h>  

cout<<"Unable  to  opened  file!";  

if(!fin){  

exit(1);   

#include  <stdlib.h>  

#include  <fstream.h>  

//Program  terminate  if  file  is  not  opened.  

int  main(){  

fin.getline(ch,  12);  

-



C/C++  

}  

fin.close();  

Hello  World  

return  0;  

Exception  Handling   

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Exceptions  are  a  type  of  error  that  occurs  at  run  time  or  at  the  time  of  execution.  Exception  handling  is  used  

when  a  specific  code  cannot  be  handled  or  an  abnormal  condition  occurs.program   

Output:  

Runtime  Errors  

-



C/C++  

Exceptions  are  of  two  types.

•  Compile-time  Error  •  
Run-time  Exceptions  

Simple  Example  for  Exception  

int  c;  

int  a  =  5;  

#include  <iostream>  

int  b  =  0;  

int  main(){  

using  namespace  std;  

Compile-time  Errors:  Compile-

time  Errors  are  called  when  an  error  occurs  at  the  time  of  compile  time.  For  example,  
Logical  Errors,  Syntax  Errors.

Run-time  Errors(Exceptions):  When  

an  error  occurs  at  run-time,  it  is  called  Exceptions.  For  example,  divided  by  zero,  out  of  
memory,  array  out  of  bounds.  Exception  or  run  time  error  can  also  occur  when  the  program  

executes  successfully.  This  can  also  happen  if  the  IDE(Application)  you  are  using  crashes.

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  

SIR)  These  Exceptions  may  be  due  to  divided  by  zero,  out  of  bound  array,  out  of  memory  or  

other  reasons.

On  example  'Divided  by  zero'  exception  has  occurred.  It  will  be  handled  by  try-catch  block.

-



C/C++  

}  

c  =  a/b;  

try{  

throw  exception_parameter;  

return  0;  

some_statements;  

Try  to  Handle  Exception/ Run-time  Error  

There  is  a  possibility  of  exception  coming  from  the  source  code,  that  source  code  is  given  here.  This  •  Try :  from  which  try  block  the  exception  is  thrown.

•  Throw :  The  throw  keyword  is  used  to  throw  the  exception.  It  provides  information  about  the  error.  The  

parameter  given  with  the  throw  keyword  is  passed  to  the  handler.

•  Catch :  The  catch  block  is  used  to  catch  the  exception  thrown  by  throw  statement.  The  exception  is  

handled  on  the  catch  block.

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

'try  catch  throw'  statement  is  used  to  handle  exceptions.

Output :  

[Warning]  division  by  zero  [-Wdiv-by-zero]  

Syntax  for  try-catch  Block  

-



C/C++  

some_statements;  

}  

throw  exception_parameter;  

catch  (data_type  eN){  

some_statements;  

---------------  

catch  (data_type  e){  

some_statements;  

}  

catch  (data_type  e1){  

catch  (data_type  e2){  

}  

}  

some_statements;  

try{  

}  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Syntax  for  multiple  catch  Block  

-



C/C++  

using  namespace  std;  

c  =  a/b;  

int  b  =  0;  

int  c;  

<<c;  

int  a  =  5;  

"   

}  

if(b  ==  0){  

some_statements;  

try{  

}  

catch(int  ex){  

}  

#include  <iostream>  

throw  b;  

int  main(){  

cout<<"Value  of  c :   

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Handle  Divided  By  Zero  Exception(Single  catch  Block)  

-



C/C++  

return  0;  

int  b  =  10;  

if(b  ==  0){  

}  

int  a  =  5;  

try{  

int  main(){  

cout<<"You  cannot  declare  "<<ex<<"  as  denominator.";  

}  

#include  <iostream>  

using  namespace  std;  

int  c;  

}else  if(b  >  a){  

throw  b;  

Example  for  Multiple  catch  Block  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

You  cannot  declare  0  as  denominator.  

Output :  

-



C/C++  

"   

cout<<"You  cannot  declare  "<<ex1<<"  as  denominator.";  

catch(int  ex1){  

return  0;  

}  

}  

catch(char  const*  ex2){  

An  exception  is  thrown  when  memory  is  not  allocated.

throw  "Not  allowed  -  denominator  is  greater  than  numerator.";  

}  

Exceptions   Description  

}  

bad_alloc   

cout<<"Value  of  c :   

c  =  a/b;  

cout<<ex2;  

An  exception  is  thrown  when  dynamic  cast  fails.

<<c;  

}  

bad_cast   

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Output :  

Not  allowed  -  denominator  is  greater  than  numerator.  

-



C/C++  
PAARAS  INSTITUTE  OF  EDUCATION  

(KASHYAP  SIR)  Exception  is  thrown  by  unexpected  handler.

bad_weak_ptr   

An  exception  is  thrown  when  an  Arithmetic  overflow  error  occurs.

An  exception  is  thrown  if  there  is  an  invalid  domain.

logic_error   

An  exception  is  thrown  when  there  is  a  system  error.

bad_exception   

An  exception  is  thrown  if  there  is  an  invalid  argument.

domain_error   

overflow_error   

Exception  is  thrown  when  it  happens.

Exception  is  thrown  by  typeid.

invalid_argument   

system_error   

out_of_range   

This  stream  is  the  base  class  of  the  exception.

bad_typeid   

Exception  is  thrown  at  runtime.

ios_base::failure   

An  exception  is  thrown  when  there  is  a  range  error  in  the  internal  computation.

An  exception  is  thrown  when  there  is  a  future  error.

runtime_error   

An  exception  is  thrown  when  there  is  a  mathematical  underflow  error.

bad_function_call  Exception  is  thrown  on  bad  call.

An  exception  is  thrown  when  there  is  a  length  error.

future_error   

range_error   

out  of  range   

length_error   

underflow_error   

An  exception  is  thrown  when  there  is  a  bad  weak  pointer.

An  exception  is  thrown  when  the  source  code  fails  to  read.

-



C/C++  

Templates:-  

Generic  type  functions  and  classes  independent  of  other  types  (int,  float,  double  etc.)

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

classes  are  not  required  and  your  program  does  not  contain  unnecessary  code

Is.

class  becomes  of  that  type.  By  doing  this  you  will  get  functions  and  functions  for  each  data  type  separately.

A  template  function  can  be  executed  for  many  types  of  data  types  (int,  float  etc.).

Templates  are  an  important  feature  of  C++.  Templates  for  generic  programming  in  C++

Template  classes  and  functions  are  defined  with  parameters.  This  parameter

Through  Templates,  you  create  generic  type  functions  and  classes  in  C++.

Let's  become

Let's  create  classes.

is  replaced  by  actual  data  type  and  then  functions  and  classes  are  of  that  type

provide  ability.  In  generic  programming,  you  can  use  generic  type  functions  and

It  happens  That's  why  the  data  type  you  pass  as  a  parameter  is  generic  function  and

A  template  function  is  just  like  a  normal  function  except  that

Template  Functions  

-



C/C++  

)  you  have  to  create  a  separate  function.  Created  by  Integer  type

Have  to  do  In  this  situation,  you  can  just  create  a  template  function  for  addition.

Its  general  syntax  is  not  being  checked.

For  example,  if  you  create  a  function  of  addition,  then  every  data  type  (int,  float  etc.

As  you  know  the  task  is  one  (addition)  but  you  have  to  create  different  functions.

Let  us  now  see  how  you  can  create  a  template  function  in  C++.

It  will  be  necessary  and  you  will  be  able  to  do  the  work  easily.

If  you  want,  you  can  create  a  template  function.

The  addition  function  will  not  add  float  values.

Although  you  can  do  this  work  by  function  overloading  also,  but  in  that  you  will  have  to

PAARAS  INSTITUTE  OF  EDUCATION  
(KASHYAP  SIR)  If  you  perform  an  identical  task  with  different  data  types  through  functions

Some  code  has  to  be  written.  By  creating  template  function  you  have  to  write  less  code.

Which  will  add  both  integers  and  floats  if  needed.

return-type  function-name  (arguments  with  type  T)  

//  Statements  to  be  executed  (with  T  type)  

template<class  T>  

{  

-



C/C++  

is  given  and  class  is  a  keyword.  You  can  use  typename  instead  of  class.

An  example  is  for  understanding.

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

In  the  above  syntax  T  is  a  parameter  which  can  be  replaced  by  different  data  types

Basically  it  tells  that  the  name  of  the  data  type  will  be  passed  here.  let's  do  it  now

return  x  +  y;  

#include<iostream>  

{  

{  

int  main()  

//Adding  floats   

T  add(T  x,  T  y)  

}  

template<class  T>   //Template  Function  

}  

cout<<"Sum  of  5.2  &  3.2  is :"<<add(5.2,3.2);   

using  namespace  std;  

cout<<"Sum  of  5  &  3  is :"<<add(5,3); //  Adding  integers  

-



C/C++  

return  0;  

Sum  of  5.2  &  3.2  is :  8.4  

}  

Sum  of  5  &  3  is :  8  

As  you  can  see  in  the  above  example,  integer  and  floating  by  the  same  function

Thus,  you  have  to  create  a  separate  class  for  each  type  of  number  (int,  float,  double).

will  enter  the  values.  You  may  not  even  know  that  the  data  members  of  your  class

and  later  display  this  number  by  display()  function.  This

It  is  possible.  This  program  generates  the  given  output.

Sometimes  it  may  happen  that  you  do  not  know  the  type  of  user  while  making  the  program.

Is.  Like  you  create  a  class  which  number  is  taken  as  argument  while  constructing  object

You  can  create  classes.

point  is  being  added  to  both  types  of  values.  This  is  possible  through  template  functions.

Can  be  integer  and  can  also  be  floating  point  number.  In  this  situation  you  template

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Sometimes  it  happens  that  you  create  similar  classes  with  different  data  types.

In  this  situation  you  can  create  template  class.

(variables)  will  be  of  which  type.  For  example,  the  current  bank  balance  whole  number  of  the  user

C++  Template  Classes  

-



C/C++  

Used  to  be.

Can  Its  general  syntax  is  not  being  checked.

The  method  of  creating  objects  of  Template  class  is  also  different.  its  syntax  should  not  be  checked

Can  create  functions.  Let  us  now  see  how  you  can  create  a  template  class.

In  the  above  syntax  as  you  know  template  is  a  keyword  and  actual  data  type

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  

SIR)  When  you  create  a  template  class,  you  can  easily  template  all  its  functions.

K  is  the  placeholder.

Let  us  now  try  to  understand  template  classes  through  a  complete  example.

template<class  T>  

class-name  <data-type>  object-name(arguments-list);   

}  

using  namespace  std;  

class  class-name  

{  

#include  <iostream>  

//Statements  with  T  data  type  as  required  

-



C/C++  
PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

}  

num  =  n;

{  

T  whether;

{  

NumDisplay(T  n)  

int  main()  

class  NumDisplay  

void  display()  

template<class  T>  

}  

cout<<"Number  is :  "<<num;  

private:  

{  

{  

public:  

};  

-



C/C++  

NumDisplay<float>  obj(5.2); //Passing  data  type  &  float  value  to  constructor  

return  0;  

}  

obj.display();  

Number  is :  5.2  

Can  be  represented.  For  example,  till  now  we  have  seen  many  examples  of  cin  and  cout  stream  
objects.  People  who  have  learned  “C”  may  wonder  how  these  Stream  Classes  are  of  much  use  

in  place  of  Traditional  I/O.  So  the  answer  is  that  stream  classes  are  less  error  prone  than  

traditional  I/O.  If  you  have  studied  “C”  then  you  would  know  that  if  you  use  %f  Control  String  
instead  of  %d  Control  String  by  mistake,  you  do  not  get  the  desired  result.  But  which  type  of  

control  string  is  not  used  in  “C++”  stream,  because  stream

Object  itself  knows  in  what  way  it  has  to  display  which  data  or  which  type  of  value

Stream  Classes  in  C++:  The  general  name  of  the  flow  of  data  in  Input  and  Output  is  Stream.  

For  this  reason,  streams  in  C++  are  called  iostreams.  an  iostream  as  an  object  of  a  particular  class

What  kind  of  value  will  enter.  This  program  generates  the  given  output.

Through  classes,  you  can  also  handle  such  situations  when  you  do  not  know  that  the  user

In  the  above  example  when  object  is  constructed  then  T  will  be  replaced  by  float  and

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

The  num  variable  declared  in  the  class  will  be  made  of  float  type.  template  like  this

The  ios,  istream  &  ostream  

Stream  Classes  –  

-



C/C++  

Provides  the  ability  to  use  Classes  in  the  same  way  we  use  Basic  Data  Types.  This  helps  us  in  

programming  and  our  program  is  more  error  free.  If  we  want  to  do  Graphics  Programming,  then  how  

can  we  not  use  C's  Traditional  I/O,  whereas  iostream  also  proves  to  be  fully  useful  in  Graphics  

Programming.  Because  they  provide  us  a  best  way,  by  which  we  can  write  data  in  files  and  format  in  

memory,  so  that  these  formatted  data  can  be  used  later  in  any  other  GUI  and  Dialog  Box.

Input  is  to  be  done  in  Object.  Using  streams  mostly  solves  the  problem  of  writing  syntax  in  the  program.

Stream  Classes  can  be  seen  as  a  Complex  Hierarchy.  However,  we  do  not  need  to  know  this  Hierarchy  

completely  as  I/O  does.  But  even  a  little  understanding  is  useful.  We  have  already  used  some  stream  

Classes.  The  extraction  operator  >>  is  a  member  of  the  istream  class  and  the  insertion  operator  <<  is  

a  member  of  the  ostream  class.  Both  these  classes  are  derived  from  an  ios  class.  The  cout  object  

represents  the  standard  output  stream,  which  is  responsible  for  the  video  display  and  is  a  predefined  

object  of  the  ostream_withassign  class,  which  is  derived  from  the  ostream  class.  In  this  way  cin  is  

object  of  istream_withassign  class  which  is  derived  from  istream  class.  Classes  that  work  to  send  

Output  to  Video  Display  and  take  Input  from  Keyboard  are  declared  in  Header  File  named  iostream.h.  

We  have  included  this  Header  File  in  each  of  our  programs.  Those  classes  which  are  mainly  used  for  

disk  files  are  called

Mistakes  do  not  

happen.  Which  Existing  Operator  or  Function  can  we  overload  and  use  with  our  created  class,  such  as  

Insertion  (<<)  and  Extraction  (>>)  Operators  have  been  done.  C++

Defined  in  the  Header  File  named  FSTREAM.H.  ios  

Class  is  Base  Class  of  iostream  Hierarchy.  It  has  many  Constants  and  Member  Functions,  which  are  

common  to  all  types  of  Input  and  Output.  Some  of  these,  such  as  showpoint  and  fixed  formatting  flags,  

we  have  already  seen.  There  is  also  a  Pointer  of  streambuf  class  in  ios  Class  which  contains  Actual  

Memory  Buffers.  Data  is  read  through  this  memory  buffer  and  data  is  written  in  this  memory  buffer.  

Also,  various  types  of  Low-Level  Routines  handle  these  data  and  take  them  from  Input  and  print  them  

on  the  screen  in  Output.  There  are  also  some  low  level  routines  in  the  streambuf  class,  which  handle  

the  data  of  the  buffer.  Normally  we  don't  need  to  think  about  streambuf  class.  This  class  is  automatically  

used  by  other  classes  as  needed.  But  sometimes  it  is  very  convenient  to  use  this  buffer.

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Stream  Classes  Hierarchy   

-



PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  

SIR)  istream  Class  and  ostream  Class  are  derived  from  ios  Class  and  they  are  responsible  for  Input  

and  Output  respectively.  istream  Class  has  Member  Functions  like  get(),  getline(),  read()  and  Extraction  (>>)

The  ios  class  is  delimited  from  all  other  classes  and  has  the  most  features  that  operate  on  C++  streams.

Operators  whereas  ostream  Class  has  put(),  write()  and  Insertion  (<<)  Operators.  iostream  

Class  is  derived  from  both  istream  and  ostream  classes  by  Multiple  Inheritance.  Classes  derived  from  the  

iostream  class  can  be  used  with  devices  such  as  disk  files,  which  can  perform  both  input  and  output  functions  at  

the  same  time.  istream_withassign,  ostream_withassign  and  iostream_withassign  These  nine  classes  are  

inherited  or  derived  from  istream,  ostream  and  iostream  respectively.  In  these,  Assignment  Operators  have  been  

added,  so  that  cin,  cout  and  other  such  operators  can  be  assigned  to  others.

Formatting  Flags  The  

Formatting  Flags  are  a  set  of  enum  definitions  in  the  ios  class.  These  specify  the  choices  of  various  aspects  of  

Input  and  Output  Format  and  Operations,  acting  like  On/Off  Switches.  The  complete  list  of  these  Formatting  

Flags  is  as  follows:  Skip  (ignore)  whitespace  on  input.

Features  are  there.  The  most  important  features  under  this  class  are  Formatting  Flags,  Error-Status  Bits  and  File

Can  also  be  assigned  with  Streams.

There  are  Operation  Modes.

C/C++  

internal   

left   

skipws

Convert  to  octal.  

showpoint   

Convert  to  decimal.  

Display  ‘+’  before  positive  integers.  

Right  adjust  output  [ 12.34].  

Convert  to  hexadecimal.  

showpos   

Left  adjust  output  [12.34 ].  

oct   

hex   

right   

Use  base  indicator  on  output  (0  for  octal,  0x  for  hex).  

uppercase   

Use  padding  between  sign  or  base  indicator  and  number  [+12.34].  

showbase   

dec   

Show  decimal  point  on  output.  

Use  uppercase  X,  E,  and  hex  output  letters  ABCDEF  (the  default  is  lowercase).  

Stream  Classes  in  C++ :  The  ios  Class  

-



PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

unitbuf   

Flush  stdout,  stderror  after  insertion.  

Convert  to  octal.  

flush   

stdio   

dec   

Use  fixed  format  on  floating-point  output  [912.34].  

Manipulator   

hex   Convert  to  hexadecimal.  

Use  exponential  format  on  floating-point  output  [9.1234E2].  

ends   

oct   

Turn  on  whitespace  skipping  on  input.  

Insert  new  line  and  flush  the  output  stream.  

fixed   

scientific   

Purpose  

endl   

Flush  the  output  stream.  

Flush  all  streams  after  insertion.  

ws   

Convert  to  decimal.  

Insert  null  character  to  terminate  an  output  string.  

C/C++  

//  left  justify  output  text  

cout  <<  setiosflags(ios::fixed)  <<  
setiosflags(ios::showpoint)  <<  var  

cout.setf(ios::left);   cout  >>  “This  
text  is  left-justified";  cout.unsetf(ios::left);   

//  return  to  default  (right  justified)  

Manipulators  

Ios::skipws  

All  Flags  can  be  set  by  setf()  and  unsetcf()  ios  Member  Functions.  for  example

Manipulators  are  those  Formatting  Instructions  that  can  be  directly  inserted  into  a  stream.  We  have  used  the  endl  

manipulator  which  provides  a  new  line.  like:

Many  Formatting  Flags  are  used  with  Manipulators,  so  let's  look  at  Manipulators  first.

From  both  these  examples  we  can  see  that  there  are  two  types  of  Manipulators.  First  one  which  takes  one  

Argument  and  second  one  which  does  not  take  Argument.  No-Argument  Manipulators  are  summarized  in  the  

following  table.

There  are  many  ways  to  set  the  formatting  flags  and  different  flags  can  be  set  from  different  angles.  Since,  all  

these  Flags  are  members  of  the  ios  class,  the  Flags  are  generally  used  as  a  prefix  to  the  ios  name  and  the  Flag  is  

used  after  the  Scope  Resolution  Operator.  like

cout  <<  “Nandlal  Gopal”  <<  endl;  We  

have  also  used  the  setsiosflags()  Manipulator.  vehicle :

-



C/C++  

Lock  file  handle.  

formatting  flags  (long)   

Unlock  file  handle.  

setiosflags()   

Set  field  width  for  output.  

precision(p);   

width(w);   

Argument   

Set  precision  (number  of  digits  displayed).  

Purpose  

Set  the  fill  character.  

Manipulator   

Set  specified  flags.  

field  width  (int)   

Function   

Get  the  precision  (number  of  digits  displayed  for  floating  point).  

formatting  flags  (long)   

setfill()   

lock   

Precision  (int)   

fill(ch);   

Get  the  current  field  width  (in  characters).  w  =  width();   

unlock   

setprecision()   

Purpose  

resetiosflags()

Set  fill  character  for  output  (default  is  a  space).  

ch  =  fill();   

fill  character  (int)   

Clear  specified  flags.  

Return  the  fill  character  (fills  unused  part  of  field;  default  is  space).  

Set  the  precision.  

p  =  precision()   

Set  the  current  field  width.  

setw()

Functions  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

cout  <<  hex  <<  var;  

Manipulator  has  to  be  used.  like:

cout  <<  “TTime  “   <<  setw(2)  <<  hours  <<  setw(2)  <<  minutes;  

This  statement  keeps  the  No-Argument  Manipulator  in  effect  until  the  stream  is  destroyed.  That's  why  we  

can  print  many  numbers  in  Hexadecimal  Format  by  using  hex  manipulator  once.  Manipulators  of  the  

following  table  take  Arguments.

Those  Manipulators  which  take  Argument  only  have  Effect  on  the  Item  before  which  they  have  been  used.  

For  example,  if  we  want  to  set  the  number  of  Fields  to  be  displayed,  then  we  use  setw()

We  can  insert  these  Manipulators  directly  into  the  stream.  for  example  the  value  of  var

There  are  also  many  functions  in  Ios  class  which  can  be  used  to  set  formatting  flags  and  do  various  

things.  The  following  table  lists  the  functions  that  do  not  deal  with  errors.

Use  the  Manipulator.  If  we  have  to  decide  the  number  of  Fields  of  second  Number,  then  again  we  have  to

To  display  the  value  in  hexadecimal  format,  we  can  write  the  following  statement:

-



C/C++  

Unset  specified  formatting  flags.  

dec,  oct,  hex   

Second  argument;  field  to  clear  

setf(flags);   

Formatted  insertion  for  all  basic  and  overloaded  types  

Function   

Set  specified  formatting  flags  (e.g.,  ios::left).  

scientific,  fixed   

left,  right,  internal   

Purpose  

basefield  

setf(flags,  field);   

unsetf(flags);   

>>   

First  clear  field,  then  set  flags.  

First  argument:  flags  to  set   

adjustfield  

floatfield  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

These  functions  are  called  using  the  Dot  operator  of  the  object  of  the  specific  stream.  For  example,  to  set  the  

field  width  to  21,  we  can  write  the  following  statement:

like:

cout.fill(*’);  

cout.set(ios::left,  ios::adjustfield);  

cout.width(21);  

Thus  the  following  statement  sets  the  Fill  character  to  (*)  Asterisk:

This  statement  clears  all  the  flags,  then  sets  the  left  flag  as  Left  Justification.  In  this  way  we  can  do  the  

formatting  of  Input  and  Output.  This  Formatting  is  not  only  done  for  Display  and  Keyboard,  it  can  also  be  done  

for  Bust  Files.

cout.unsetf(ios::left);  

We  can  use  many  functions  to  Directly  Manipulate  ios  Formatting  Flags.  like

Stream  Classes  in  C++ :  The  istream  Class  Derived  from  the  ios  

Class  istream  Class  Performs  Different  Types  of  Functions  or  Extractions  Related  to  Input  Activities.  We  can  

get  confused  in  relation  to  Extraction  ( >> )  and  its  related  Output  Activities  and  Insertion.  That's  why  an  attempt  

has  been  made  to  show  the  difference  between  their  children  in  the  following  table:

The  2-Argumnent  Version  of  the  setf()  Function  Uses  the  Second  Argument  to  Reset  All  Flags  of  a  Particular  

Type  or  Field.  Then  the  Flag  specified  in  the  first  Argument  gets  set.  This  function  resets  all  set  flags  before  

setting  a  new  flag.  The  following  table  is  showing  this  Arrangement:

To  set  Left  Justification,  we  can  write  the  following  statement:

cout.setf(ios::left);  

To  set  back  the  Right  Justification,  we  can  write  the  following  statement:

-



C/C++  

Extract  one  character  into  ch.  

Read  one  character,  leave  it  in  stream.  

get(str,  MAX);   

getline(str,  MAX,  DELIM)  

read(str,  MAX)   

Insert  character  ch  into  stream.  

Insert  last  character  read  back  into  input  stream.  

Extract  up  to  MAX  characters  into  array.  

For  files.  Extract  up  to  MAX  characters  into  str  until  EOF.  

Function   

Extract  characters  into  array  str  until  MAX  characters  or  the  DELIM   character.  

Leave  delimiting  char  in  stream.  

Sets  distance  (in  bytes)  of  file  pointer  from  start  of  file.  

Extract  characters  into  array  str  until  specified  delimiter  (typically  ‘\n’).   

Extract  and  discard  up  to  MAX  characters  until  (and  including)  the   specified  

delimiter  (typically  ‘\n’).  

Purpose  

Return  number  of  characters  read  by  a  (immediately  preceding)  call  to   get(),  

getline(),  or  read().  

get(str,  SHARE)

get(ch);   

peek(ch)   

seekg(position,  seek_dir)  

Return  position  (in  bytes)  of  file  pointer  from  start  of  file.  

<<   

get(str);   

get(str,  MAX,  DELIM)  

count  =  gcount()  

Extract  characters  into  array  str,  until  ‘\0’.  

putback(ch)   

seekg(position)   

Formatted  extraction  for  all  basic  and  overloaded  types.  

Leave  delimiting  char  in  stream.  

ignore(MAX,  DELIM)  

Sets  distance  (in  bytes)  of  file  pointer  from  specified  place  in  file:  seek_dir   can  be  

ios::beg,  ios::cur,  ios::end.  

position  =  tellg(pos)

put(ch);   

Extract  characters  into  array  str  until  MAX  characters  or  the  DELIM   character.  

Extract  delimiting  character.  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

We  have  already  seen  some  of  these  functions.  Most  of  them  are  used  with  Functions  
cin  Object,  which  represents  Keyboard  as  well  as  Disk  Files.  then  the  last  four
Functions'  names  can  be  used  with  files  only.
Stream  Classes  in  C++:  The  ostream  class  ostream  

class  handles  the  activities  of  Output  or  Insertion.  Most  commonly  used  member  
functions  are  given  in  the  following  table:

-



C/C++  

position  =  tellp()   

Insert  SIZE  characters  from  array  str  into  file.  

Flush  buffer  contents  and  insert  new  line.  

Return  position  of  file  pointer,  in  bytes.  

Sets  distance  in  bytes  of  file  pointer  from  start  of  file.  

Used  for  

flush();   

Set  distance  in  bytes  of  file  pointer  from  specified  place  in  file.   seek_dir  

can  be  ios::beg,  ios::cur,  or  ios::end.  

write(str,  SIZE)   

seekp(position,  seek_dir)  

seekp(position)   

Class   

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  SIR)

Derived   

from   

from   

Derived  from  iostream  

Its  last  four  functions  are  used  only  with  Disk  Files.

istream_withassign,  

ostream_withassign,  

iostream_withassign,  

_withassign  classes  are  derived  from  classes  except  those  classes  which  have  overloaded  assignment  operator.  That's  

why  their  objects  can  be  copied.  streams

our  enemy

stream

It  does  not  have  any  functions  of  its  own  except  Constructors  and  Destructors.  The  class  derived  from  the  iostream  

class  can  perform  both  Input  and  Output  functions.  There  is  _withassign  Class  in  our  Library :

Object  should  not  be  copied.  Because  every  object  of  this  type  is  related  to  some  streambuf  object

Stream  Classes  in  C++ :  The  iostream  and  the  _withassign  Classes  Derived  from  istream  and  ostream,  the  

iostream  class  mainly  serves  as  the  base  class  for  other  classes,  from  which  other  classes,  especially  

iostream_withassign,  can  be  derived.

Objects  of  some  Classes  in  Library  cannot  be  copied  while  Objects  of  some  Class  can  be  copied.  Stream  Library  is  

designed  for  this,  because  which  Stream  Class

Derived   

Associated  stays.  It  

uses  some  memory  area  for  storing  data  in  streambuf  object  memory.  So  if  we  copy  the  Stream  Object,  then  this  fact;  

There  will  be  confusion  regarding  whether  we  are  copying  the  streambuf  object  as  well  or  not.  However,  in  some  cases  

it  is  important  to  copy  stream  objects,  as  in  the  case  of  redirection,  the  predefined  objects  cin  and  cout  are  copied.  The  

istream,  ostream  and  iostream  classes  have  been  made  uncopyable  by  making  their  overloaded  copy  constructor  and  

assignment  operator  private,  while  objects  of  _withassign  classes  derived  from  them  can  be  copied.

Stream  Classes  in  C++:  Predefined  Stream  Objects  Through  cin  and  cout  Objects,  

we  have  learned  to  use  Derived  Predefined  Stream  Objects  from  _withassign  Classes.  These  are  usually  objects  

related  to  Keyboard  and  Monitor.  Two  other  predefined  objects  are  cerr  and  clog.  These  four  are  explained  in  the  

following  table:

-



C/C++  

cout   ostream_withassign  (Normal  screen  output)  

ostream_withassign  (Log  output)  

cerr

clog   

eating

ostream_withassign  (Error  output)  

PAARAS  INSTITUTE  OF  EDUCATION  (KASHYAP  
SIR)  istream_withassign  (Keyboard  input)

When  sent  to  the  Output  Object,  that  Output  first  goes  to  the  Buffer  of  cout,  then  it  is  displayed  

on  the  Monitor.  Also  the  output  sent  to  cerr  cannot  be  redirected.  We  can  use  the  cerr  object  

to  see  the  output  in  the  event  that  our  program  is  terminating  before  completion.  The  clog  
object  is  similar  to  the  cerr  object.  Note  that  it  also  cannot  be  redirected,  but  its  output  goes  to  the  

Buffer,  whereas  the  output  of  cerr  does  not  go  to  the  Buffer.

The  cerr  object  is  generally  used  to  display  error  messages  and  program  diagnostics.  Whatever  

output  is  sent  to  cerr,  it  is  immediately  displayed  on  the  monitor.  while  we  output  cout

-




