C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

UNIT -5

File Handling-

* In File Handling, data is permanently stored in a secondary storage device (Hard
disk). Open, close, read, write keys are used. * File Handling

Earlier, both cin and cout have been using iostream.h for these objects. When iostream does not use this header file then

cout has no value. File handling in C++ is a topic which has been givencé@ géistecREnakSH Nt aiAnEaa R ERES.

stay | In the same way, File Handling has also been done.

File Handling ©f you use why do »

In the program, cin and cout store the memory for a short time, that is, when the programmer closes the program, then all
the data of the program is destroyed. Programmer uses some variables, arrays, structures, unions to store data in the program, but
this data is not permanently stored. File Handling is used to store it permanently. Files created during file handling, whether they are

of different types (.txt, .doc etc.), are portable. It is used in other computers as well. Ultimately this header file fstream has to be used

for File Handling. fstream There are no classes in this header file.

1. ifstream
2. ofstream
3. fstream

ifstream: ifstream is used to read the file. ofstream : ifstream is used to write to the file. fstream:
fstream is used to read and write the file. There are two classes in the fstream class, ifstream and
ofstream. If the file is to be read, then ifstream is required and if data is to be written on the file, ofstream is

required. But it should be understood in which mode to open the file.

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

Seven modes of file have been created.

Type of
Modes inti
Stream Description
ios::in ifstream The file is opened in read mode.
ios::out ofstream The file is opened in write mode.
)) ifstream Binary file is doneoffeno extension is given to the file, then the file is opened in default .txt
ios::binary
ofstream mode
i0s:ate ifstream Data is appended at the end-of-file and the entire data in the file is controlled with the
ofstream existing data.
Data is appended at the end-of-file. It is used to add meaning data.
ios: :app ofstream
ios::trunk ofstream Data is reduced from the file.
_ If the file does not already exist, the open function fails and the file is not created.
ios::nocreate ofstfeam
_ If the file already exists, it open function fails and new file create
ios::noreplace ofgtream
doesn't

If stream class 'ifstream’ is used then file open in default ios::in(read) mode if stream class 'ofstream’ is used thdrafilgens.

open in default ios::out(write) mode.

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)
Opening File

Syntax For Opening File

stream-class stream-object;

stream-object.open("file_name");

for eg.

downstream fault; [/l create stream

fout.open("sample.txt"); // default mode is ios::out

Let's open Multiple modes can also be used with the Bitwise OR Operator(])
go to File.

for eg.

fstream error;

fout.open("sample.txt", ios::injios::out);

There is a

When File closing file, then it has to be closed as well. When the file is closed, the file that
allocates open memory it is freed.

Syntax For Closing File

stream-object.close();

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)
for eg.

fout.close();

Check File Open or not!

open fail() mentiso, fil e s dredksetiethevike (filans dgebathmémben file , its is_open() or
functions return boolean values.

Source Code :

#include <iostream.h>

#include <fstream.h>

using namespace std;

int main({

ifstream error;

fout.open("sample.txt");

if(fout.is_open()){ Il or if(tfout.fail)
cout<<"File is Opened."<<endl;

lelse{

cout<<"Unable to open file."<<endl;

fout.close();

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

return O;

Output:

File is Opened.

Read Data from a File The

given program is used to read a File. There is a variable of

character data type, in which it is done to store the data of the file. Ifstream's stream-object name is fouted
and later file is used with no argument of mode in function then ios::in is already there (default).

open What have you done? But
open member is because, if istream class

Later whether the file is open or not is checked by the condition. If the file is open, then the program
continues and if the file is not open, then the program will be terminated by exit() (stdlib.h) function. Later,
while loop is used to check whether the file has reached end-of-file or not.

sample.txt

Hello World!

Source Code :

#include <iostream.h>

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

#include <fstream.h>

#include <stdlib.h>

using namespace std;

int main(){

char ch[30];

ifstream error;

fout.open("sample.txt") ;

if(fout){

cout<<"Unable to opened file!";

exit(1); /[Program terminate if file is not opened.

cout<<"File Contents : ";

while(ffout.eof()

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

error>>ch;

cout<<ch<<"";

fout.close();

return O;

Output :

File Contents : Hello World!

Write data on a File

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

using namespace std;

int main(}

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

downstream fault;

fout.open("sample.txt") ;

if(fout){

cout<<"Unable to opened file!";

exit(1); /[Program terminate if file is not opened.

fout<<"Hello Friends!";

fout.close();

return O;

Output:
sample.txt

Hello Friends!

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP

SIR) get() Member Function
Syntax for get() for File Handling
stream-object_of ifstream_class.get(char ch); ey

char ch = stream-object_of_ifstream_class.get();

Syntax for get() for Console

cin.get(char ch); or

char ch = cin.get();

Single character is inputted from the get() member function. The

get() function is defined in the istream class. This means to use this function iostream this
header file has to be included. get() are unformatted stream 1O functions. get() function is

used to read the data. cin>>ch and cin.get(ch); What is mefic? cin >> ch; It does not

accept newline and whitespace. cin.get; It takes in newlines and whitespaces.

get() Example

#include <iostream.h>

#include <fstream.h>

using namespace std;

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

int main(X

char ch;
cout<<"Enter one character : ;
cin.get(ch);
cout<<"Entered character : ";
cout<<ch;

return O;

Output:

Enter one character : o

Entered character : o

get() with file

Source Code :

sample.txt

Hello Friends!

#include <iostream.h>

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

#include <fstream.h>

#include <stdlib.h>

using namespace std;

int main(}

char ch;

ifstream fin;

fin.open("sample.txt") ;

if(ffin)

cout<<"Unable to opened file!";

exit(1); /[Program terminate if file is not opened.

cout<<"File Contents : ";

while(ffin.eof(){

fin.get(ch);

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

cout<<ch;

fin.close();

return O;

Output:

File Contents : Hello Friends!

put() Member Function

Syntax for put() for File Handling

stream-object_of_ofstream_class.put(char ch);

Syntax for put() for Console

cout.put(char ch);

A single character is outputted from the put() member function. put()

function is defined in ostream class. This means to use this function iostream this header file has to
be included. put() are unformatted stream IO functions.

C/C++
= PAARASINGINMUIE OF EDUCATION
(KASHYAP SIR) put() function is used to write data.
put() Example

Source Code :

#include <iostream.h>

#include <fstream.h>

using namespace std;

int main(¥

char ch='H', c = 65;

cout<<"Value of ch : ";

cout.put(ch)<<endl;

cout<<"Value of c : ";

cout.put(c); /I ASCII value of a is 65

return O;

Output:

Value of ch : H

Value of c: A

put() with file

Source Code :

#include <iostream.h>
#include <fstream.h>

#include <stdlib.h>

using namespace std;

int main(}

char ch="H";

downstream fault;

fout.open("sample.txt") ;

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

if(fout){

cout<<"Unable to opened file!";

exit(1); /IProgram terminate if file is not opened.

fout.put(ch);

fout.close();

return O;

Output: sample.txt

write() Member Function

Syntax for write() for File Handling

stream-object_of_ofstream_class.write(line_or_string, stream_size);

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)
Syntax for write() for Console

cout.write(line_or_string, stream_size);

Concatenate write() function with dot operator

cout.write(line_or_string, stream_size).write(line_or_string,

stream_size);

write() function is the output function, which displays the line. write()
function is a member function of the iostream class. The write() function

has two arguments.

1. line_or_string: This is an array of charactetype. 2.
stream_size : How many characters to take from the line is written here. If stream_size is exceeded then
whitespaces are also done.

write() Example

Source Code :

#include <iostream.h>
#include <fstream.h>

#include <stdlib.h>

using namespace std;

int main({

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

char ch[12] = "Hello World!";

cout.write(ch, 12);

return O;

Output: sample.txt

Hello World!

write() with file

Source Code :

#include <iostream.h>
#include <fstream.h>

#include <stdlib.h>

using namespace std;

int main({

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

char ch[12] = "Hello World!";

downstream error;

fout.open("sample.txt") ;

if(fout){

cout<<"Unable to opened file!";

exit(1); /[Program terminate if file is not opened.

fout.write(ch, 12);

fout.close();

return O;

Output: sample.txt

Hello World!

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

getline() Member Function

Syntax for getline() for File Handling

stream-object_of _ifstream_class.getline(line_or_string,

stream_size);

Syntax for getline() for Console

cin.getline(line_or_string, stream_size);

getline() function This is the input function, which inputs the line from the keyboard.
getline() function is a member function of istream class. There is NULL character(\0)
at the end of the string of getline() function.

getline() Example

sample.txt

Hello World!

Source Code :

#include <iostream.h>
#include <fstream.h>

#include <stdlib.h>

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

using namespace std;

int main(¥

char ch[12];
cout<<"Enter String : ";
cin.getline(ch, 12);

cout<<"Entered String : "<<ch;

return O;

Output:

Enter String : Hello World!

Entered String : Hello World

getline() with file

sample.txt

Hello World!

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)
Source Code :

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

using namespace std;

int main(}

char ch[12];

ifstream fin;

fin.open("sample.txt") ;

if(ffin)

cout<<"Unable to opened file!";

exit(1); /IProgram terminate if file is not opened.

fin.getline(ch, 12);

cout<<ch;

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

fin.close();

return O;

Output:

Hello World

Exception Handling

Runtime Errors

Exceptions are a type of error that occurs at run time or at the time of execution. Exception handling is used

program when a specific code cannot be handled or an abnormal condition occurs.

C/C++
PAARAS INSTITUTE OF EDUCATION (KASHYAP

SIR) These Exceptions may be due to divided by zero, out of bound array, out of memory or
other reasons.

Exceptions are of two types.

e Compile-time Error
Run-time Exceptions

Compile-time Errors: Compile-

time Errors are called when an error occurs at the time of compile time. For example,
Logical Errors, Syntax Errors.

Run-time Errors(Exceptions): When

an error occurs at run-time, it is called Exceptions. For example, divided by zero, out of
memory, array out of bounds. Exception or run time error can also occur when the program

executes successfully. This can also happen if the IDE(Application) you are using crashes.

Simple Example for Exception

On example 'Divided by zero' exception has occurred. It will be handled by try-catch block.

#include <iostream>

using namespace std;

int main(){
inta=5;
inth=0;

int c;

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

c=alb;

return O;

Output :

[Warning] division by zero [-Wdiv-by-zero]

Try to Handle Exception/Run-time Error
'try catch throw' statement is used to handle exceptions.

here. This » Try Tlfene ivlaigrossitblbglofrexesptiptiatoinitigdiam the source code, that source code is given

* Throw : The throw keyword is used to throw the exception. It provides information about the error. The
parameter given with the throw keyword is passed to the handler.

 Catch : The catch block is used to catch the exception thrown by throw statement. The exception is
handled on the catch block.

Syntax for try-catch Block

try{
some_statements;

throw exception_parameter;

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

catch (data_type e}

some_statements;

Syntax for multiple catch Block

try{

some_statements;

throw exception_parameter;

catch (data_type el)

some_statements;

catch (data_type e2)X

some_statements;

catch (data_type eNX

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

some_statements;

Handle Divided By Zero Exception(Single catch Block)

#include <iostream>

using namespace std;

int main({
inta=>5;
intb = 0;
int c;
try{
if(b == 0)

throw b;

c =alb;

cout<<"Value of c : " <<

catch(int ex){

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

cout<<"You cannot declare "<<ex<<" as denominator.";

return O;

Output :

You cannot declare 0 as denominator.

Example for Multiple catch Block

#include <iostream>

using namespace std;

int main(¥
inta=>5;
intb =10;
int c;
try{
if(b == O
throw b;

lelse if(b > a)

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

throw "Not allowed - denominator is greater than numerator.”;

c = alb;

cout<<"Value of c : " <<c;

catch(int ex1)

cout<<"You cannot declare "<<ex1<<" as denominator.";

catch(char const* ex2){

cout<<ex2;

return O;

Output :

Not allowed - denominator is greater than numerator.

Exceptions Description

bad_alloc An exception is thrown when memory is not allocated.

bad_cast An exception is thrown when dynamic cast fails.

C/C++
PAARAS INSTITUTE OF EDUCATION

bad_exception

(KASHYAP SIR) Exception is thrown by unexpected handler.

bad_function_call Excejption is thrown on bad call.

bad_typeid

Exception is thrown by typeid.

bad_weak_ptr

An exception is thrown when there is a bad weak pointer.

ios_base::failure

This stream is the base class of the exception.

logic_error

An exception is thrown when the source code fails to read.

runtime_error

Exception is thrown at runtime.

domain_error

An exception is thrown if there is an invalid domain.

future_error

An exception is thrown when there is a future error.

invalid_argument

An exception is thrown if there is an invalid argument.

length_error

An exception is thrown when there is a length error.

out_of range

out of range Exception is thrown when it happens.

overflow_error

An exception is thrown when an Arithmetic overflow error occurs.

range_error

An exception is thrown when there is a range error in the internal computation.

system_error

An exception is thrown when there is a system error.

underflow_error

An exception is thrown when there is a mathematical underflow error.

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

Templates:-

Templates are an important feature of C++. Templates for generic programming in C++

provide ability. In generic programming, you can use generic type functions and

Let's create classes.

Generic type functions and classes independent of other types (int, float, double etc.)

It happens That's why the data type you pass as a parameter is generic function and

class becomes of that type. By doing this you will get functions and functions for each data type separately.
classes are not required and your program does not contain unnecessary code

s.

Through Templates, you create generic type functions and classes in C++.
Template classes and functions are defined with parameters. This parameter
is replaced by actual data type and then functions and classes are of that type

Let's become

Template Functions

A template function is just like a normal function except that

A template function can be executed for many types of data types (int, float etc.).

C/C++

PAARAS INSTITUTE OF EDUCATION
(KASHYAP SIR) If you perform an identical task with different data types through functions

If you want, you can create a template function.

For example, if you create a function of addition, then every data type (int, float etc.
) you have to create a separate function. Created by Integer type

The addition function will not add float values.

As you know the task is one (addition) but you have to create different functions.
Have to do In this situation, you can just create a template function for addition.

Which will add both integers and floats if needed.

Although you can do this work by function overloading also, but in that you will have to
Some code has to be written. By creating template function you have to write less code.

It will be necessary and you will be able to do the work easily.

Let us now see how you can create a template function in C++.

Its general syntax is not being checked.

template<class T>

return-type function-name (arguments with type T)

/I Statements to be executed (with T type)

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

In the above syntax T is a parameter which can be replaced by different data types

is given and class is a keyword. You can use typename instead of class.
Basically it tells that the name of the data type will be passed here. let's do it now

An example is for understanding.

#include<iostream>

using namespace std;

template<class T> /[Template Function

Tadd(Tx, Ty)

return X +y;

int main()

cout<<"Sum of 5 & 3 is :"<<add(5,3); // Adding integers

cout<<"Sum of 5.2 & 3.2 is :"<<add(5.2,3.2); /IAdding floats

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

return O;

As you can see in the above example, integer and floating by the same function
point is being added to both types of values. This is possible through template functions.

It is possible. This program generates the given output.

Sumof5&3is:8

Sumof5.2&3.2is:8.4

C++ Template Classes

Sometimes it happens that you create similar classes with different data types.

Is. Like you create a class which number is taken as argument while constructing object
and later display this number by display() function. This

Thus, you have to create a separate class for each type of number (int, float, double).

In this situation you can create template class.

Sometimes it may happen that you do not know the type of user while making the program.

will enter the values. You may not even know that the data members of your class

(variables) will be of which type. For example, the current bank balance whole number of the user
Can be integer and can also be floating point number. In this situation you template

You can create classes.

C/C++
PAARAS INSTITUTE OF EDUCATION (KASHYAP
SIR) When you create a template class, you can easily template all its functions.

Can create functions. Let us now see how you can create a template class.

Can Its general syntax is not being checked.

template<class T>

class class-name

/IStatements with T data type as required

In the above syntax as you know template is a keyword and actual data type

K is the placeholder.

The method of creating objects of Template class is also different. its syntax should not be checked

Used to be.

class-name <data-type> object-name(arguments-list);

Let us now try to understand template classes through a complete example.

#include <iostream>

using namespace std;

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)
template<class T>

class NumDisplay
private:
T whether;
public:

NumDisplay(T n)

num = n;

void display()

cout<<"Number is : "<<num;

int main()

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

NumDisplay<float> obj(5.2); //Passing data type & float value to constructor

obj.display();

return O;

In the above example when object is constructed then T will be replaced by float and
The num variable declared in the class will be made of float type. template like this

Through classes, you can also handle such situations when you do not know that the user

What kind of value will enter. This program generates the given output.

Number is : 5.2

Stream Classes —

The ios, istream & ostream

Stream Classes in C++: The general name of the flow of data in Input and Output is Stream.

For this reason, streams in C++ are called iostreams. an iostream as an object of a particular class
Can be represented. For example, till now we have seen many examples of cin and cout stream
objects. People who have learned “C” may wonder how these Stream Classes are of much use

in place of Traditional I/0. So the answer is that stream classes are less error prone than
traditional I/O. If you have studied “C” then you would know that if you use %f Control String
instead of %d Control String by mistake, you do not get the desired result. But which type of
control string is not used in “C++” stream, because stream

Object itself knows in what way it has to display which data or which type of value

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)
Input is to be done in Object. Using streams mostly solves the problem of writing syntax in the program.
Mistakes do not

happen. Which Existing Operator or Function can we overload and use with our created class, such as
Insertion (<<) and Extraction (>>) Operators have been done. C++

Provides the ability to use Classes in the same way we use Basic Data Types. This helps us in
programming and our program is more error free. If we want to do Graphics Programming, then how
can we not use C's Traditional I/O, whereas iostream also proves to be fully useful in Graphics
Programming. Because they provide us a best way, by which we can write data in files and format in
memory, so that these formatted data can be used later in any other GUI and Dialog Box.

Stream Classes Hierarchy

Stream Classes can be seen as a Complex Hierarchy. However, we do not need to know this Hierarchy
completely as I/0O does. But even a little understanding is useful. We have already used some stream
Classes. The extraction operator >> is a member of the istream class and the insertion operator << is

a member of the ostream class. Both these classes are derived from an ios class. The cout object
represents the standard output stream, which is responsible for the video display and is a predefined
object of the ostream_withassign class, which is derived from the ostream class. In this way cin is
object of istream_withassign class which is derived from istream class. Classes that work to send
Output to Video Display and take Input from Keyboard are declared in Header File named iostream.h.
We have included this Header File in each of our programs. Those classes which are mainly used for

disk files are called

Defined in the Header File named FSTREAM.H. ios

Class is Base Class of iostream Hierarchy. It has many Constants and Member Functions, which are
common to all types of Input and Output. Some of these, such as showpoint and fixed formatting flags,
we have already seen. There is also a Pointer of streambuf class in ios Class which contains Actual
Memory Buffers. Data is read through this memory buffer and data is written in this memory buffer.
Also, various types of Low-Level Routines handle these data and take them from Input and print them
on the screen in Output. There are also some low level routines in the streambuf class, which handle

the data of the buffer. Normally we don't need to think about streambuf class. This class is automatically
used by other classes as needed. But sometimes it is very convenient to use this buffer.

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP
SIR) istream Class and ostream Class are derived from ios Class and they are responsible for Input
and Output respectively. istream Class has Member Functions like get(), getline(), read() and Extraction (>>)
Operators whereas ostream Class has put(), write() and Insertion (<<) Operators. iostream

Class is derived from both istream and ostream classes by Multiple Inheritance. Classes derived from the
iostream class can be used with devices such as disk files, which can perform both input and output functions at
the same time. istream_withassign, ostream_withassign and iostream_withassign These nine classes are
inherited or derived from istream, ostream and iostream respectively. In these, Assignment Operators have been
added, so that cin, cout and other such operators can be assigned to others.

Can also be assigned with Streams.

Stream Classes in C++ : The ios Class

The ios class is delimited from all other classes and has the most features that operate on C++ streams.
Features are there. The most important features under this class are Formatting Flags, Error-Status Bits and File

There are Operation Modes.

Formatting Flags The

Formatting Flags are a set of enum definitions in the ios class. These specify the choices of various aspects of
Input and Output Format and Operations, acting like On/Off Switches. The complete list of these Formatting
Flags is as follows: Skip (ignore) whitespace on input.

skipws

left Left adjust output [12.34].

right Right adjust output [12.34].

internal Use padding between sign or base indicator and number [+12.34].

dec Convert to decimal.

oct Convert to octal.

hex Convert to hexadecimal.

showbase Use base indicator on output (0 for octal, Ox for hex).

showpoint Show decimal point on output.

uppercase Use uppercase X, E, and hex output letters ABCDEF (the default is lowercase).

showpos Display ‘+' before positive integers.

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

scientific Use exponential format on floating-point output [9.1234E2)].
fixed Use fixed format on floating-point output [912.34].

unitbuf Flush all streams after insertion.

stdio Flush stdout, stderror after insertion.

There are many ways to set the formatting flags and different flags can be set from different angles. Since, all
these Flags are members of the ios class, the Flags are generally used as a prefix to the ios name and the Flag is

used after the Scope Resolution Operator. like

los::skipws

All Flags can be set by setf() and unsetcf() ios Member Functions. for example
cout.setf(ios::left); cout >> “This /I left justify output text
text is left-justified"; cout.unsetf(ios::left);

/I return to default (right justified)

Many Formatting Flags are used with Manipulators, so let's look at Manipulators first.

Manipulators

Manipulators are those Formatting Instructions that can be directly inserted into a stream. We have used the end|
manipulator which provides a new line. like:

cout << “Nandlal Gopal” << endl; We

have also used the setsiosflags() Manipulator. vehicle :

cout << setiosflags(ios::fixed) <<
setiosflags(ios::showpoint) << var

From both these examples we can see that there are two types of Manipulators. First one which takes one

Argument and second one which does not take Argument. No-Argument Manipulators are summarized in the
following table.

Manipulator Purpose

ws Turn on whitespace skipping on input.

dec Convert to decimal.

oct Convert to octal.

hex Convert to hexadecimal.

endl Insert new line and flush the output stream.

ends Insert null character to terminate an output string.

flush Flush the output stream.

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)
lock Lock file handle.

unlock Unlock file handle.

We can insert these Manipulators directly into the stream. for example the value of var

To display the value in hexadecimal format, we can write the following statement:

cout << hex << var;

This statement keeps the No-Argument Manipulator in effect until the stream is destroyed. That's why we
can print many numbers in Hexadecimal Format by using hex manipulator once. Manipulators of the
following table take Arguments.

Manipulator Argument Purpose

setw() field width (int) Set field width for output.

setfill() fill character (int) Set fill character for output (default is a space).
setprecision() Precision (int) Set precision (number of digits displayed).
setiosflags() formatting flags (long) Set specified flags.

resetiosflags() formatting flags (long) Clear specified flags.

Those Manipulators which take Argument only have Effect on the Item before which they have been used.
For example, if we want to set the number of Fields to be displayed, then we use setw()
Use the Manipulator. If we have to decide the number of Fields of second Number, then again we have to
Manipulator has to be used. like:

cout << “TTime « << setw(2) << hours << setw(2) << minutes;
Functions

There are also many functions in los class which can be used to set formatting flags and do various
things. The following table lists the functions that do not deal with errors.

Function Purpose

ch =Aill(); Return the fill character (fills unused part of field; default is space).
fill(ch); Set the fill character.

p = precision() Get the precision (number of digits displayed for floating point).
precision(p); Set the precision.

w = width(); Get the current field width (in characters).

width(w); Set the current field width.

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

setf(flags); Set specified formatting flags (e.g., ios::left).
unsetf(flags); Unset specified formatting flags.
setf(flags, field); First clear field, then set flags.

These functions are called using the Dot operator of the object of the specific stream. For example, to set the
field width to 21, we can write the following statement:

cout.width(21);
Thus the following statement sets the Fill character to (*) Asterisk:

cout.fill(*);
We can use many functions to Directly Manipulate ios Formatting Flags. like
To set Left Justification, we can write the following statement:

cout.setf(ios::left);
To set back the Right Justification, we can write the following statement:

cout.unsetf(ios::left);
The 2-Argumnent Version of the setf() Function Uses the Second Argument to Reset All Flags of a Particular
Type or Field. Then the Flag specified in the first Argument gets set. This function resets all set flags before
setting a new flag. The following table is showing this Arrangement:

First argument: flags to set Second argument; field to clear
dec, oct, hex basefield

left, right, internal adjustfield

scientific, fixed floatfield

like:

cout.set(ios::left, ios::adjustfield);
This statement clears all the flags, then sets the left flag as Left Justification. In this way we can do the
formatting of Input and Output. This Formatting is not only done for Display and Keyboard, it can also be done
for Bust Files.
Stream Classes in C++ : The istream Class Derived from the ios
Class istream Class Performs Different Types of Functions or Extractions Related to Input Activities. We can
get confused in relation to Extraction (>>) and its related Output Activities and Insertion. That's why an attempt

has been made to show the difference between their children in the following table:

Function Purpose

>> Formatted insertion for all basic and overloaded types

get(ch);

get(str);

get(str, MAX);

get(str, SHARE)

get(str, MAX, DELIM)

getline(str, MAX, DELIM)

putback(ch)

ignore(MAX, DELIM)

peek(ch)

count = gcount()

read(str, MAX)

seekg(position)

seekg(position, seek_dir)

position = tellg(pos)

We have already seen some of these functions. Most of them are used with Functions

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

Extract one character into ch.

Extract characters into array str, until \0’.

Extract up to MAX characters into array.

Extract characters into array str until specified delimiter (typically ‘\n’).

Leave delimiting char in stream.

Extract characters into array str until MAX characters or the DELIM character.

Leave delimiting char in stream.

Extract characters into array str until MAX characters or the DELIM character.

Extract delimiting character.

Insert last character read back into input stream.

Extract and discard up to MAX characters until (and including) the specified
delimiter (typically ‘\n’).

Read one character, leave it in stream.

Return number of characters read by a (immediately preceding) call to get(),

getline(), or read().

For files. Extract up to MAX characters into str until EOF.

Sets distance (in bytes) of file pointer from start of file.

Sets distance (in bytes) of file pointer from specified place in file: seek_dir can be

ios::beg, ios::cur, ios::end.

Return position (in bytes) of file pointer from start of file.

cin Object, which represents Keyboard as well as Disk Files. then the last four
Functions' names can be used with files only.
Stream Classes in C++: The ostream class ostream

class handles the activities of Output or Insertion. Most commonly used member
functions are given in the following table:

Function

<<

put(ch);

Purpose

Formatted extraction for all basic and overloaded types.

Insert character ch into stream.

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

flush(); Flush buffer contents and insert new line.
write(str, SIZE) Insert SIZE characters from array str into file.
seekp(position) Sets distance in bytes of file pointer from start of file.

Set distance in bytes of file pointer from specified place in file. seek_dir
seekp(position, seek_dir))])
can be ios::beg, ios::cur, or ios::end.

position = tellp() Return position of file pointer, in bytes.

Its last four functions are used only with Disk Files.

Stream Classes in C++ : The iostream and the _withassign Classes Derived from istream and ostream, the
iostream class mainly serves as the base class for other classes, from which other classes, especially
iostream_withassign, can be derived.

It does not have any functions of its own except Constructors and Destructors. The class derived from the iostream

class can perform both Input and Output functions. There is _withassign Class in our Library :

istream_withassign, Derived from stream
ostream_withassign, Derived from our enemy
iostream_withassign, Derived from iostream

_withassign classes are derived from classes except those classes which have overloaded assignment operator. That's
why their objects can be copied. streams

Objects of some Classes in Library cannot be copied while Objects of some Class can be copied. Stream Library is
designed for this, because which Stream Class

Object should not be copied. Because every object of this type is related to some streambuf object

Associated stays. It

uses some memory area for storing data in streambuf object memory. So if we copy the Stream Object, then this fact;
There will be confusion regarding whether we are copying the streambuf object as well or not. However, in some cases
it is important to copy stream objects, as in the case of redirection, the predefined objects cin and cout are copied. The

istream, ostream and iostream classes have been made uncopyable by making their overloaded copy constructor and

assignment operator private, while objects of _withassign classes derived from them can be copied.

Stream Classes in C++: Predefined Stream Objects Through cin and cout Objects,

we have learned to use Derived Predefined Stream Objects from _withassign Classes. These are usually objects
related to Keyboard and Monitor. Two other predefined objects are cerr and clog. These four are explained in the
following table:

Class Used for

C/C++

PAARAS INSTITUTE OF EDUCATION (KASHYAP

eating SIR) istream_withassign (Keyboard input)
cout ostream_withassign (Normal screen output)

cerr ostream_withassign (Error output)

clog ostream_withassign (Log output)

The cerr object is generally used to display error messages and program diagnostics. Whatever
output is sent to cerr, it is immediately displayed on the monitor. while we output cout

When sent to the Output Object, that Output first goes to the Buffer of cout, then it is displayed
on the Monitor. Also the output sent to cerr cannot be redirected. We can use the cerr object

to see the output in the event that our program is terminating before completion. The clog
object is similar to the cerr object. Note that it also cannot be redirected, but its output thees to
Buffer, whereas the output of cerr does not go to the Buffer.

