
UNIT -3

C/C++

Arithmetic operator -

C++ operator, like a symbol, just like we use operator for mathematical task in real world,

similarly we use operator to do the same task through a program.

For example,

Where “+” is an operator and a and b can also be called operands or variables.

These are basic operators or default operators. These operators use two variables to

perform a task. Generally these are present in all programming languages.

In the programming world, these operators are divided into different classes, in C++ these

operators are divided as follows.

These are described in the table below-

A + B

Operator

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

– a-b

addition

Operator

*

a+b

Name

multiplication

A=

Example

a*b

subtraction

-

Name

Less than equal to

%

>

>=

division

<

<=

a%b

a<=b

modulus

Example

a>b Greater than

Operator

a<b

/

a>=b Greater than and equal to

Less than

a/b

Relational Operator

C/C++

cout<<a-b; // print addition -1

int a= 3,b=4;

cout<<a*b; // print addition 12

cout<<a+b; // print addition 7

compare

In C++, an operator of a third type is created by combining two operators of
different or similar types. Lajsere is called the relational operator. In C++ these
operators are used to pass two variables in a single statement.

like-

lucky to do

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

Equal to

!=

a==b

a!=b Not equal to

==

C/C++

{

// body of if

// body of if

}

}

if(a<b) // if 3 is greater than 4 than body of if will be execute.

if(a!= b) if a and b value is not equal than body of if will be execute.

{

relational operators will be used with control statements. like,

if(a== b) if a and b value is equal than body of if will be
execute.

For example, a = 3, b = 4,

{

less than operator

“Not Equal To” Operator

// body of if

“Equal To” operator

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

}

Here is its program-

C/C++

if(b==c) {

cout<<b<<" is greater than "<<a;

#include<iostream.h>

#include <conio.h>

if(a>b) {

if(a!=b) {

void main()

/

}

int a = 3, b = 4

clrscr();

}

{

cout<<a<<" is Not Equal to "<<b;

, c =4;

cout<<b<<" is Equal to "<<c;

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

}

}

4 is Not Equal to 3

getch();

4 is greater than 3

4 is Equal to 4

if(a < b && a > 0) {

C/C++

Operator

a > b && a != b

Name

NOT

||

Example

&&

a > b && a != ba >b || a != bOR

!A

AND

!

OUTPUT

This type of operator is used for two or more than two conditions. to do

Like in some program,

If the value of variable “a” is less than variable “b” and variable “a” is greater than 0

(both condition should be true) then only body of loop will execute.

int a = 5, b = 10 c = 20;

compare

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

}

{

#include <conio.h>

//body of if

if(a < b || a != b) {

#include<iostream.h>

}

//body of if

if(!c) // if c value 0, than execute body of if

//body of if

}

C/C++

“NOT-operator” is used with a single variable,

melksi statement program

int c = 0;

NOT operator can be used with a single variable,

, The operator behaves like an “ON” and “OFF” button where ON is 0 and the other value

represents OFF. Therefore it is used to check the execution of the function.

If the value of variable “a” is greater than variable “b” or the value of variable “b” 0 is

equal to variable “b” (any one of the conditon should be true) then body of loop will execute.

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

{

}

getch();

clrscr();

int a = 5, b = 10 ;

if(a < b || a != b) {

cout<<a<<" and "<<b<<"are not Equal";

}

if(a < b && a > 0) {

5 is smaller than 10 but greater than 0

}

void main()

5 and 10 are Not Equal

cout<<a<<" is smaller than "<<b<<" but greater than 0;

C/C++

OUTPUT

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

Here are some assignment operators in C++-

Assignment operator is used to initialize / assign a variable / operand in the
program, like,

Assignment operator -

C/C++

operation

addition and assign

a %= b // a = a % b

same as above with different

Right Side variable then assign the
final result to the Left side

%=

variable.

Name Operator

+=

assignment a = 5 assign values to operands

-=

description

a -= b // a = a – b

same as above with different

a += b // a = a + b

add Left Side variable to the

/=

=

a /= b // a = a / b

same as above with different

operation

int a = 5;
float b = 0.5;

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

operation

C/C++

}

#include<iostream.h>

#include <conio.h>

mul *= count; //

cout<<"\nMultiply: "<<mul<<endl; // print variable mul value

{

void main()

cout<<"Adition : "<<sum; // print variable sum value

for(count = 1; count<=5;count++)

int count,sum=0,mul=1; //variable initialization using assignment operator

}

clrscr();

getch();

sum += count; // store result left side

{

Here are the examples given below-

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

OUTPUT

These operators are pre-defined in the library of C++. These types of operators are used for

advanced tasks in C++.

C++ special operator

C/C++

increment

in doing,

decrease value one by one

To store the address of a
de-reference operator

Pound sign

decrement

Operator

Operator

reference variable ÿÿÿ,

—

Conditional or ternary

ÿÿÿheader file include

Description

?:

& reference operator

Name

In conditional statement,

++

variables

increase value one by one

program

*

Addition: 15

Multiply: 120

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

New

To refer to a member of a class

or structure from a pointer,

sizeof operator

delete operator

sizeof()

.

Delete

arrow operator

, comma operator

->

:: scope resolution operator

dynamic memory allocation ÿÿÿ

To change the scope of variable

and in class and structure, for outline

definition

access

dot operator

multiple variable, declaration ÿÿ

initialization ÿÿÿ,

to de-locate dynamic memory,

To access member in structure,

union and class

To find the size of a data-type,

new operator

C/C++
PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

To insert a new line like “enter” in

a keyboard

switch.

structure.

members in class and

new line feed operator

definition of their function

Endl

To change the scope of a
variable and for the outline

C/C++

#include<iostream.h>

cout<<"Address of count variable : "<<&a<<"\n"; // reference operator

void main()

Size of int data type(int byte): 2

cout<<"size of int data type(in byte): "<<sizeof(a); // sizeof operator

{

clrscr();

getch();

#include <conio.h>

int a =4; // assignment operator

Address of count variable : 0x8f87fff4

Here are some examples of special operators –

OUTPUT

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

Operator Overloading – What is
operator overloading?

C/C++

Most of the operators in C++ can be overloaded but there are some
operators which cannot be overloaded. Operators which cannot be overloaded
are the following:-

In other words, “Operator overloading is a compile-time polymorphism in
which operators are overloaded to give a special meaning to user-defined
data types.”

*

• scope operator – ::
• sizeof • member
selector -. • member

pointer selector – • ternary
operator -?:

In C++, operator overrolling is used for user-defined data type In order to
perform the operation. Its main advantage is that through this we can

perform different operations in the same operand. For example – we use '+'
operator to add integer. And '+' is also used to concatenate strings.

In C++, we can specify more than one definition for an operator in the same
scope. This is called operator overloading.

Operator Overloading

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

https://ehindistudy.com/2021/01/11/polymorphism-in-cpp-in-hindi/
https://ehindistudy.com/2020/12/18/data-types-in-cpp-in-hindi/

Operator overloading ÿÿ syntax

Rules of Operator Overloading – There are some

important rules regarding operator overloading which
we have to keep in mind.

C/C++

...

...

...
}

public

returnType operator symbol (arguments) {

class className {

,

here,

To overload operator we use a special operator function:-

• operator is a keyword. •

symbol is an operator which we want to overload. is
the arguments to be passed. • arguments to the function

• Only built-in operators can be overloaded. If some operators are not
present in C++ then we cannot overload them. • The precedence

and associativity of operators cannot be changed. • We cannot use

friend function to overload any particular operators. But, we can use
member function to overload these operators.

returnType is the return type of the function.

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

• It is necessary to define assignment “=”, subscript “[]”, function call
“()” and arrow operator “->” as member function. • The overloaded

operator must contain at least one operand of user-defined data type.
• Overloaded operator cannot hold default parameters. • Some

operators like – assignment “=”, address “&”, and comma “,” are already

overloaded. • The arity (qualification) of operators cannot be changed.
That is, unary which is

C/C++

Operator overloading

#include <iostream>

using namespace std;
class Demo { private:
int y;

public:
Demo() : y(19) {}
void operator ++() { y
= y + 2; } void Print()
{ cout << "The Count
is: " << y; } }; int
main() { Demo dd; ++dd;

dd.Print(); return 0; }

Below you have been given an example of this: -

will remain unary. Binary will remain binary.

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

In C++, operator overloading can be performed by implementing the following
functions:-

The function of operator overloading can be a member function if the left operand
is an object of that class. But if the left operand is different then the function of
operator overloading must be a non-member function.

The function of operator overrolling class is made a friend function when there
is a need to access the private and protected members of the class.

Its output:– The Count is: 21

1. Member function

C/C++

Function Overloading

Introduction

Implementing Operator Overloading –

2. Non-member function 3. Friend

function

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

C++ language has the facility of specifying the same name for more than one
function according to a condition. By specifying the same name of the function, the
number of parameters is kept different in each function. This feature of C++ language
is called Function Overloading. Function overloading is used when multiple functions
with the same name take different types of parameters.

-

https://ehindistudy.com/2021/01/24/member-function-in-cpp-hindi/
https://ehindistudy.com/2021/01/23/friend-function-in-cpp-hindi/

Definition

Declaration

Program

C/C++

cout<<"\n enter C for circle and R for rectangle";

void main()

cout<<"Enter radius"

if (ch=="R") :: (ch=="R"))

float area (float len, float wid);

{

char ch;

cout<<"The area of the circle is : <<area (radius);

cin>>radius;

{

#include<iostream.h>

clrscr();

else

}

float radius, len,wid;

if ((ch=="C" :: (ch="C"))

floaty area (float radius);

cout<<"enter length :" cin>>len;

{

#include <conio.h>

cin>>ch;

Float area (float len, float wid);

The following two functions are different in C++-

Function overloading is a logical method of calling multiple functions with different arguments and data types.

Here both the function have same name but number of argument is different. At the time of taking the function

call, the compiler of C++ language checks the number of arguments.

Float area (float radius);

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

The main advantage of Function overloading is that it increases the readability of the
program as we do not need different names for the same function.

In the above example all the 4 functions are overloaded. Their names are same but

their arguments (parameters) are different.

compile-time polymorphism to function overrolling It is also said

For example –

In other words, “In C++, many functions can have the same name but have different
parameters. This is called function overrolling.

// End of main function }}

cout<<"The area of the rectangle :"<<area(len,wid);

{ return(len*wid);

float area pi=3.14159

return(pi*radius*radius); float area(float

len;float wid)

cout<<"enter width :" cin>>wid;

Advantage 1.

Helps to understand, debug and use the function easily. 2. Easy
Management of Code. 3. Prevents the use of different function names for
the same operation.

}

C/C++

// same name different arguments
int demo() { } int demo(int a) { }
float demo(double a) { } int
demo(int a, double b) { }

How to do Function Overloading?

Function Overloading in C++ In C++, Function
overloading is an important feature in which two or more
functions have the same name but their parameters are different.

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

https://ehindistudy.com/2021/01/11/polymorphism-in-cpp-in-hindi/

By changing the type of Argument – In this method,

the data types of the parameters of the function are different.

By changing the number of Arguments – In this type of

function overrolling, the number of arguments of the function is different.

In the above example, we have overloaded the add() function by changing the number of arguments.

First we have defined add() with two parameters and then we have defined add() with three parameters.

By changing the type of 2. Arguments.

100

1. By changing the number of Arguments.

#include <iostream>

using namespace
std; int add (int a, int
b) { cout << a + b <<
endl; return 0; } int add
(int a, int b, int c)
{ cout << a + b + c <<
endl; return 0; } int main
() { add (10, 30); add (50,
20, 30); } ÿÿÿÿ ÿÿÿÿÿÿ–
40

Functions are overloaded in two ways.

Example of this –

C/C++
PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

Will get

So every time overloaded method of Base / Parent class will be called if

If you want to achieve method overloading in inheritance, then it should not be

there, because of every inheriting, the scope of the method changes .

In the above example, we have defined the add() function thrice. In first we

have used int, in second float and in third double parameters.

Example of this –

C/C++

Method Overloading in Inheritance

#include <iostream>

using namespace std;
int add(int x, int y) // first definition
{ cout<< x+y << endl; return 0; } float
add(float a, float b) { cout << a+b <<
endl; return 0; }

double add(double x, double y)
{ cout << x+y << endl; return 0;

} int main()
{ add(30,
10);
add(21.45f, 38.4f);
add(41.24, 21.234); }
Its output is - 40

59.85 62.474

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

You also define the method in its child / derived class.

For Example :

C/C++

"

"

public :

<< d;

using namespace std;

bObj.print("learnhindituts");

#include <iostream>

};

// define another class B that inherits class A.

class A{

};

}

<< s << endl;

// define class.

void print(string s){

public :

// define same name method but different definition.

B bObj;

int main() {

// define a public method to print string.

class B : public A{

}

cout << "Double Number :

cout << "String :

void print(double d){

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

}

bObj.print(23.23);

return 0;

C/C++
PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

-

