
UNIT -2

C/C++

for eg.

char stud1 = "Rakesh"

• Whatever can be the data type of Array. • Array's

variables are stored at their nearest memory location. • Initialization of Array starts from

'0'.

stud2 = "Uday", stud3 = "Raj" ;

0 1

,

Only one array_variable has to be created for all these names in Array. for eg. char arr[] =

{ "Rakesh", "Uday", "Raj" };

2 3

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

• The first element of the array has the lowest memory address.

There are two types of Array.

4

Why is Array used?

• Single/One Dimensional Array • Multi

Dimensional Array

Array - This is a collection of variables of the same data type.

If the names of any students are to be stored, then separate variables have to be made for them.

-

C/C++

data_type array_name[size_of_array];

#include <iostream.h>

using namespace std;

for eg.

int arr[5];

int main(){

int i,num[5]={1, 2, 3, 4, 5};

Syntax for Single Dimensional Array Initialization

data_type array_name[size_of_array] = {value1, value2,...,value n};

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

int arr[5] = {1, 2, 3, 4, 5};

for(i=0;i<5;i++){

for eg.

Example for One/Single Dimensional Array

Single/One Dimensional Array

cout<<"Array Number is "<<num[i]<<endl;

}

Syntax for Single Dimensional Array Declaration

Source Code :

-

C/C++

Memory

Output :

arr[0]

Address

5

array

Array Number is 1

1

0x69fee8 0x69feec 0x69fee0 0x69fef4 0x69fef8

2

Array Number is 2

arr[1] arr[2]

Array Number is 3

3 4

Array Number is 4

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

Array Memory Representation

arr[3]

Array Number is 5

• Here there is a 4-4 buffer in the address because the size of the integer is 4bytes due to the system being 32-bit. That's

why there is a buffer of 4-4 in the Memory Address. • If the data type of the array was character, then there would have

been a 1-1 buffer in the address.

return 0;

arr[4]

Array

Elements

}

index of

-

C/C++

arr[2][3]

data_type array_name[row_size][column_size]; for

eg.

arr[1][0]

Syntax for Multi Dimentional Array Initialization

Source Code :

arr[1][1]

int arr[3][4];

for eg.

int arr[3][4] = {1,2,3,4,5,6,7,8,9,10,11,12}; OR

Column1 Column2 Column3 Column4

arr[1][2] arr[1][3]

Row1

int arr[3][4] = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};

Example for Multi Dimensional Array

arr[0][0] arr[0][2]

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

Row3

arr[0][1] arr[0][3]

Multi Dimensional Array

arr[2][0] arr[2][1] arr[2][2]

Syntax for Multi Dimentional Array Declaration

Row2

-

C/C++

[1][2]=7

}

int main() {

[1][3]=8

Output :

int arr[3][4] = { {1,2,3,4}, {5,6,7,8}, {9,10,11,12} };

[2][0]=9

int i, j;

[0][0]=1

[0][1]=2

for (i = 0; i < 3; i++){

for (j = 0; j < 4; j++){

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

}

[0][2]=3

cout<<"["<<i<<"]["<<j<<"] = "<<arr[i][j]<<endl;

}

#include <iostream.h>

[0][3]=4

[1][0]=5

[1][1]=6

using namespace std;

return 0;

-

What is pointer

C/C++

[2][3]=12

#include<iostream.h>

#include<conio.h> void

main()

introduction

{

int number[50];*ptr int n,i;

cout<<"\n Enter the count \n;

cin>>n;

Pointer is a main feature of C++ language. Pointer is a special variable which is used to store the memory

address of another variable. The pointer is also declared in the same way as an ordinary variable is

declared.

What is Pointer? (Definition)

Declaration

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

A variable that stores the address of another variable is called a pointer.

Like any other variable, pointer also needs to be declared before it is used. (*) sign is used to declare the

variable of pointer, it is called pointer operation.

[2][1]=10

[2][2]=11

data_type * pointer_name program

code of Pointer

-

C/C++

4. Pointers reduce the time duration and complexity of the program.

cin>>numbers[i]; }

25

5. To access the memory address of a variable.

45

ptr = numbers; int

sum = 0; for (i=0; i<n;

i++) {

6. To pass array and string in dynamic memory.

if (*ptr %2 == 0)

34

sum of even numbers = 60

sum = sum+ **ptr; ptr+

+; } cout<<"\n\n sum of

even numbers ="<<sum; }

Output

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

5

Uses of Pointer

Enter the count

Enter the number one by one 10

cout<<"\n Enter the number one by one; for(i=0; i<n; i++)

1. Returning more than one value in all functions.

2. To access memory elements.

3. Pointers are more efficient in handling memory and data tables.

{

16

-

}

C/C++

Pointer to function

#include<iostream.h>

#include<conio.h>

8. In doing low level programming.

Program code

7. In passing array and string in a function.

Function is similar to variable which has a memory location. The function pointer is another important

feature of C++. Just as integer, character and floats have addresses in memory, functions also have

physical addresses in memory. This address is the entry point of the function which is assigned to the

pointer and the pointer can be used to invoke the function.

{ private:

void swap(int* p*int*a) { int*r; *r =
p; *p = *a; *a = *r; } }; void

main()

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

{ int x,y;
cout<<"Enter two numbers"<<endl; cin>>x>>y;

A ob; ob.swap(&x,&y); cout<<"endl<<x<<y<<endl;
cout<<y; getch();

class A

-

6

C/C++

int data;

Enter two numbers

pte to ptr

ipt = & data; ptr i ptr

= & iptr; * i ptr = 100;

example

5

printf("The variable data contains : %d\n", data); **ptr i ptr = 200; data = 300;

printf("ptr i ptr is pointing to = %d\n" *ptr i ptr); getch(); }

4

#include<iostream.h>

#include <conio.h>

4

Pointer to Array

void main() {

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

Pointer to pointer is used to bring flexibility in array and use pointer in function.

Pointer to Pointer

Syntax

Output

int * i ptr int **

ptr i ptr;

int data;

Address

data_type **

-

C/C++

Syntax

#include<iostram.h>

Just as there are pointers to other types of variables, in the same way we can also create pointers to

Objects, Pointers specify the objects created by a class. Pointers to object are the special pointers

specifying the object of a class.

#include<conio.h> void

main()

<data_type> * pointer_name[size];

Syntax

{ static int # a[4]={1,2,3,4}; int i, n; temp; n=4;

cout<<"contents of the array"<<endl; for(i=0;

i<=n-1; i++)

class_name * object pointer_name

example

example

{ temp= *(&(a)[0]+(i); cout<<"value

=<<temp<<endl; } };

#include<iostream.h>

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

The way array can be created from a common data_type like integer, float, character etc. In the same way

an array is declared with a pointer, in the same way an int array is a group of int values. Similarly, array of

pointer is a group of many memory addresses. The memory addresses in the array of pointers can be the

surfaces of different variables.

Pointer to Object

-

Call By Value ÿÿ Call By Reference -

C/C++

int code; float

price; public:

There are two types of parameters in the function.

void get_data (int a, int b) { code=a;
price=b; }

void main()

1. Formal Parameter

2. Actual Parameter

{

cout<<"code"<<code<<endl;;

};

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

cout<<"price"<<price<<endl; }

void main()

#include <conio.h>

class product {

{ clrscr();

product x;

product * ptr = & x; ptr -

get_data(100,60.50); ptr - show();

getch(); }

-

C/C++

swap (a, b)

for eg.

}

}

void swap(int x, int y); // Formal Parameters

void swap (int x, int y){

int main(){

The parameter which is written in the function call is called Actual Parameter.

for eg.

int a=2; b=10

swap (a, b)

void swap (int x, int y){

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

void swap(int x, int y);

}

//Formal Parameters

Formal Parameter

int main(){

int a=2; b=10

//Actual Parameter

The parameter which is written in the declaration and definition of the function is called Formal

Parameter.

-

There are two types of Function Calling.

C/C++

for eg.

}

#include <iostream.h>

1. Call By Value

2. Call By Reference

using namespace std;

void swap(int x, int y);

1. Call By Value

• In Call By Value the value of the variable as a parameter to the function • In

Call By Value the value of the Actual Parameter is copied to the Formal Parameter.

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

pass is done.

Here the variables 'a' and 'b' are passed to the function 'add' in the program.

Here the values of 'a' and 'b' are copied to the variables 'x' and 'y'.

-

C/C++

pass

cout<<"Before Swapping a = "<<a<<" and b "<<b<<endl;

cout<<"After Swapping a = "<<x<<" and b "<<y;

}

swap(a, b);

}

Output :

Before Swapping a = 2 and b 10

void swap(int x, int y)

{

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

temp = x;

After Swapping a = 10 and b 2

int temp;

x=y;

int main(){

2. Call By Reference

• In Call By Reference, the address of the variable is given as a parameter to the function. is done.

int a = 2, b = 10;

y = temp;

-

C/C++

cout<<"After Swapping a = "<<*x<<" and b "<<*y;

swap(&a, &b);

Here the values of 'a' and 'b' are not copied to the variables 'x' and 'y'.

}

Yellowsurf holds the address of the variables.

for eg.

void swap(int *x, int *y)

{

#include <iostream.h>

using namespace std;

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

int main(){

int temp;

void swap(int *x, int *y);

int a = 2, b = 10

• In Call By Value the value of Actual Parameter is not copied to Formal Parameter.

temp = *x;

*x = *y;

*y = temp;

Here the variable 'a' and 'b' address have been passed to the function 'add' in the program.

cout<<"Before Swapping a = "<<a<<" and b "<<b<<endl;

-

Introduction for Memory Allocation

C/C++

Dynamic Memory Allocation This is a very good feature for c++.

• When the variable is created, the compiler allocates memory at compile-time.

Output :

1. Compile-time/ Static Memory Allocation

}

1. Compile-time/Static Memory Allocation 2.

Run-time/Dynamic Memory Allocation

If the user created a variable of integer data type, then memory of 2 bytes on 16-bit or 4 bytes on 32-bit

is allocated.

After Swapping a = 10 and b 2

goes

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

When variable is declared, then variable; Memory is allocated according to the data type.

There are two types for memory allocation.

Before Swapping a = 2 and b 10

-

C/C++

For example,

int arr[10];

When such an array is created, only 10 integer values can be declared in it and each variable will

allocate memory of 4 bytes.

1. new operator
2. delete operator

• Declaration of variable is done at Compile-time.

Allocation is done for.

If you allocate memory at compile-time, then the space of this memory is constant. • When array

• When the variable is created, then from which data type it is created, then the compiler allocates that

memory only according to it.

In C programming, malloc, calloc, realloc and free are used for dynamic allocation, similarly there are

two such operators in C++, which are used for dynamic memory.

• Memory is allocated at Run-time in Dynamic Memory Allocation. • Memory is

allocated when the program runs in Dynamic Memory Allocation. • Here variables are created according to need. • Declaration of variables

is not done in Dynamic Memory Allocation. just at compile-time

1 byte for character 4

bytes for float

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

2. Run-time/ Dynamic Memory Allocation

The declaration of the variable is done.

For example,

4 bytes for 32-bit Integer

-

C/C++

Syntax for new operator with pointer

This memory allocation; Occurs at run-time

pointer = new data_type;

Syntax for new

Here dynamic memory can be allocated with any data type and array with new operator. Here the class

of memory allocation can also be taken.

pointer = new data_type[array_size]; //for Array

new data_type

new data_type[array_size];

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

new int;

For Example.

new int[10];

1. new operator

The new operator is used to allocate dynamic memory.

When dynamic memory allocation is to be done then 'pointer' is used. When new operator is a

dynamic allocation then its address; The new operator set is stored in the given pointer.

-

C/C++

For Example

int a;

eat>>a;

int *ptr;

ptr = new int;

int *ptr;

ptr = new int[a]; or int *ptr = new int[a];

ptr = new int[50]; //for array

or

int *ptr = new int[50]; //for array

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

int *ptr = new int;

The size of the array is also defined by any user.

If seen in the example of Dynamic Memory Allocation, then there the address of int with new; Int *ptr

has been taken to store and the address of int will be returned from new in ptr and will be stored inside

ptr.

As in Pointer, if you want to hold the address of integer data type variable, then the pointer is also of the same

data type, similarly if you want to store a new int address, then the pointer should also be of nteger.

For Example

-

C/C++

When new operator; Allocates memory, then de-allocates or frees the memory allocated with

the delete operator.

delete []ptr; // for array

Example for new and delete operator

to

new operator is used in program, then delete operator is used when program

Source Code :

#include <iostream.h>

is

Syntax for delete

delete []pointer_name; //for array

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

using namespace std;

delete pointer_name;

Example for delete

delete Operator

int main(){

The delete operator de-allocates the allocated dynamic memory.

delete ptr;

-

C/C++

cout<<"Enter value of ptr : ";

Value is ptr : 2

Example for new and delete operator with array

cin>>*ptr;

cout << "Value is ptr :

Source Code :

#include <iostream.h>

" <<*ptr<< endl;

delete ptr;

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

}

using namespace std;

return 0;

Output :

int *ptr;

int main(){

ptr = new int;

Enter value of ptr : 2

-

C/C++

Enter 4 elements

cout<<"Enter number of elements : ";

for(i=1; i<=a; i++){

cout<<ptr[i]<<endl;

eat>>a;

ptr = new int[a];

}

delete []ptr;

cout<<"Enter "<<a<<" elements "<<endl;

for(i=1; i<=a; i++){

cin>>ptr[i];

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

return 0;

cout<<"Element "<<i<<" : ";

}

int a, i;

}

Output :

Enter number of elements : 4

int *ptr;

cout<<"Entered Elements :"<<endl;

-

CLASS WITH CONSTRUCTOR, DESTRUCTOR AND ARRAY

C/C++

Element 3 : 8

#include <iostream.h>

using namespace std;

Element 4 : 9

Entered Elements :

class A{

public:

6

4

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

9

A(){

8

cout << "Constructor"<<endl;

Element 1 : 6

~A(){

}

cout << "Destructor"<<endl;

Element 2 : 4

Source Code :

-

Introduction to Constructors

C/C++

int main()

Constructor

Destructor

{

A *a = new A[3];

Destructor

Destructor

delete[] a;

return 0;

Output :

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

}

Constructor

}

Constructor is a type of member function that initializes the object of the class. In this function , you assign the

initial value to the data members (variables) of the class . Whenever a new object of a class is created, then

the constructor of that class is called. happens and all the statements given in it are executed

};

Constructor

-

https://javahindi.com/2021/05/07/cpp-function-in-hindi/
https://javahindi.com/2021/05/07/cpp-function-in-hindi/
https://javahindi.com/2021/03/22/cpp-classes-object-in-hindi/

C/C++

If you want, using the constructor itself, you can assign these variables with your desired value or with the values that the

user will pass as arguments while creating the object. Below is an example of assigning different values to these variables

through the constructor.

class product

int batchld;

{

{

private:

};

private:

When you create an object of this class, the default constructor is called by c++ and 0 values are assigned to the price

and batchld variables, and zero is the initial value for the integer.

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

constructor provides you the ability to perform the necessary tasks before using any object like you can initialize

class members variables, establish connection to database/server, etc. For example suppose you have created a

class whose name is product in this class you have declared 2 variable price and batchld as given below

class product

int price;

-

https://javahindi.com/2021/03/22/cpp-classes-object-in-hindi/

C/C++

int price;

product() //constructor

};

{

int batchld;

In the above example, the price and batchld variables have been assigned 300 and 1005 values respectively inside the

constructor. Whenever the object of this class is created, these values will be automatically assigned to these variables.

price=300;

As I told you, if you want, you can also initialize the class variable with the values passed by the user, such a constructor

is called a parameterized constructor, you will be told about it further, but before that let's see what are the features of the

constructor.

public:

Characteristics of constructor-

batchld=1005;

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

}

-

C/C++

3. Constructor name is same as class name 4.

Constructors are automatically called when object is created 5. No return

type is defined with constructors and they do not return any value

Some features of the following constructors are being given, knowing about which you can

understand the constructor in a better way.

default constructor

6. No class can inherit the constructor, however, a derived class can call the

constructor of the base class.

1. The constructor should be declared in the public access modifier

section 2. You can design the constructor inside the class as well as outside the class

You do not need to design the default constructor, when you design another

constructor, the default constructor is automatically created and called by c++.

7. Constructor cannot be declared virtual

normal constructor

can do

Let us now try to learn about the different constructor provided by c++

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

Type of constructor:

Below you are being told about the different types of constructors available in c++,

so let's try to learn about them.

-

C/C++

//statement to be executed

Int standard;

Public:

}

Let us now try to understand it with the help of an example, in the introduction section you were told to

create a normal constructor inside the class, so let us now see how to design a normal constructor outside

the class.

Student(); //constructor declaration

Void displayStu();

#include<iostream>

Using namespace std;

{

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

Normal constructors are those to which you cannot pass arguments, in such constructors you

manually initialize the variables. The general syntax of normal constructors is being given below.

Class student

Private:

class-name()

{

Int rollno;

-

C/C++

Int main()

{

{

Rollno=1;

Standard=10;

Student obj1;

Obj1.displayStu();

}

Void student::displayStu(void)

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

Cout<<”roll no is :”<<rollno<<endl;

Return 0;

{

Cout<<”standard is :”<<standard<<”th”<<endl;

};

}

The above program generates the following output

Roll no is :1

Student::student(void)

}

-

C/C++

class-name(parameters list)

Public:

Square(int n);

{

//standard to be executed

Int calsquare();

};

}

parameterized constructor is being explained with the help of below example

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

{

Square::square(int n)

class square

Private:

standard is :10th

parameterized constructor In

parameterized constructor you can design parameters while creating object you can pass argument to parameterized constructor

which can be assigned to class variable which can be assigned to class variable general syntax of parameterized constructor is being

given to you below

Int whether;

-

C/C++

}

Result=obj1.calsquare();

Cout<<”square of 5 is :”result;

Int square::calsquare()

{

Return 0;

}

Return num * num;

}

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

{

The above program generates the following output

Int main()

Int result;

{

square of 5 is :25

copy constructor

Num=n;

Square obj1(5);

-

C/C++

Public:

class-name(class-name & obj)

Furniture(int n) //parameterized constructor

{

// statement to be executed

{

Price=n;

}

Come, now let's try to understand it through an example

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

{

}

Class furniture

Private:

If you want, you can also initialize another object from the values of one object, for this you use the copy

constructor, the object is passed as an argument in the copy constructor.

When you create a new object, all the values of the object that you give as an argument are copied to the

new object, that's why this type of constructor is called copy. The general syntax of the copy constructor is

being given below.

Int price;

-

C/C++

Price=obj.price;

{

Furniture obj(5);

}

Void showprice(void);

Obj1.showprice();

Furniture obj2(obj1); //passing obj1 as argument for copy constructor

};

Void furniture::showprice(void)

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

Cout<<”price of this object is :”<<price;

Obj2.showprice();

{

}

Furniture(furniture & obj) //copy constructor

}

The above program generates the following output

price of this object is :5

{

Int main()

-

C/C++

Like constructor, destructor is also designed with class name but in destructor you put tilde(~)

symbol before class name, parameters are never designed in destructor, general syntax of

destructor is being given below ~class-name()

Public:

MyClass()

{

//statement to be executed

{

Cout<<”object is created”<<endl;

}

Let us now try to understand the use of destructor through an example

PARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

Price:5

Using namespace std;

#include<iostream>

Class MyClass

destroyers

The members of the destructors class have functions that destroy the object only when executed,

as soon as an object goes out of scope, the destructor is called and the object is destroyed, the

destructor is automatically called.

{

-

C/C++

{

MyClass ob2;

}

Cout<<”object is destroyed”;

}

}

In the above example, as soon as the compiler comes out of the if statement, obj2 gets destroyed, this program

generates the following output

};

Int main()

PAARAS INSTITUTE OF EDUCATION (KASHYAP SIR)

MyClass obj1;

object is created

{

If(3>5)

}

object is destroyed

~MyClass()

{

-

